Skip to main content

Calcium Homeostasis in Fly Photoreceptor Cells

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Calf signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages of the light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction. been identified that are regulated by Calf, either directly or by binding to Ca2+1 calmodulin or by Ca2+-dependent phosphorylation and dephosphorylations (Figure.12). In the overwhelming majority of cases, interfering with these mechanisms produces flies that have abnormally prolonged termination phases of the light response, i.e., show defects in the negative regulation of the phototransduction. The PKC INAC and the unconventional myosin NINAC have been proposed to additionally play a role in light adaptation, i.e., in the regulation of the sensitivity of the phototransduction cascade. Also, two candidates for positive Ca2+-dependent feedback have been identified, the channel-protein TRP and the PLC(3 NORPA. However, the more interesting, albeit much harder, question how these different regulatory events play together to produce their macroscopic effect on the physiology of the photoreceptor cells has not yet been tackled. An advance of our knowledge in this direction will probably demand a more quantitative understanding of the Ca2+-dependent processes and their consequences, as well as a detailed analysis of their time course, probably down to the millisecond range. This will allow to integrate the different pathways that have already been identified into a combined model of how Ca2+ brings about its regulation of fly phototransduction. The search for answers to these questions will no doubt increase not only our knowledge of fly phototransduction, but will also further our general understanding of how complex signaling cascades can be modulated and adapted to the prevailing environmental needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fasolato C, Innocenti B, Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci 1994; 15:77–83.

    Article  PubMed  CAS  Google Scholar 

  2. Berridge M. Capacitative calcium entry. Biochem J 1995; 312:1–11.

    PubMed  CAS  Google Scholar 

  3. Barritt GJ. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 1999; 337:153–169.

    Article  PubMed  CAS  Google Scholar 

  4. Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 1989; 2:1313–1323.

    Article  PubMed  CAS  Google Scholar 

  5. Phillips AM, Bull A, Kelly LE. Identification of a Drosophila gene encoding a calmodulinbinding protein with homology to the trp phototransduction gene. Neuron 1992; 8:631–642.

    Article  PubMed  CAS  Google Scholar 

  6. Putney JW Jr, McKay RR. Capacitative calcium entry channels. Bioessays 1999; 21:38–46.

    Article  PubMed  Google Scholar 

  7. Hofmann T, Schaefer M, Schultz G et al. Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med 2000; 78:14–25.

    Article  PubMed  CAS  Google Scholar 

  8. Clapham DE, Runnels LW, Sträbing C. The TRP ion channel family. Nat Rev Neurosci 2001; 2:387–396.

    Article  PubMed  CAS  Google Scholar 

  9. Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001;http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001/90/rel/cgi/content/full/OC_sigtrans;2001/90/rel.

    Google Scholar 

  10. Chyb S, Raghu P, Hardie RC. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 1999; 397:255–259.

    Article  PubMed  CAS  Google Scholar 

  11. Hofmann T, Obukhov AG, Schaefer M et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999; 397:259–263.

    Article  PubMed  CAS  Google Scholar 

  12. Llinás R, Sugimori M, Silver RB. Microdomains of high calcium concentration in a presynaptic terminal. Science 1992; 256:677–679.

    Article  PubMed  Google Scholar 

  13. Roberts WM. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 1994; 14:3246–3262.

    PubMed  CAS  Google Scholar 

  14. Naraghi M, Neher E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca21 at the mouth of a calcium channel. J Neurosci 1997; 17:6961–6973.

    PubMed  CAS  Google Scholar 

  15. Koch C, Zador A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 1993; 13:413–422.

    PubMed  CAS  Google Scholar 

  16. Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol 2002; 64:313–353.

    Article  PubMed  CAS  Google Scholar 

  17. Augustine GJ, Neher E. Neuronal Ca2+ signalling takes the local route. Cuff Opin Neurobiol 1992; 2:302–307.

    Article  CAS  Google Scholar 

  18. Bootman M, Lipp P, Berridge M. The organisation and functions of local Ca2+ signals. J Cell Sci 2001; 114:2213–2222.

    PubMed  CAS  Google Scholar 

  19. Hardie RC. Functional organization of the fly retina. In: Ottoson D, ed. Progress in sensory physiology, Vol. 5. Berlin: Springer, 1985:1–79.

    Chapter  Google Scholar 

  20. van Hateren JH. Photoreceptor optics, theory and practice. In: Stavenga DG, Hardie RC, eds. Facets of vision. Berlin: Springer, 1989:74–89.

    Chapter  Google Scholar 

  21. Kirschfeld K, Franceschini N. Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 1969; 6:13–22.

    Article  PubMed  CAS  Google Scholar 

  22. Stavenga DG. Pseudopupils of compound eyes In: Autrum H, ed. Handbook of sensory physiology, Vol. VII/6A. Berlin: Springer, 1979:357–439.

    Google Scholar 

  23. Stavenga DG. Insect retinal pigments: spectral characteristics and physiological functions. Prog Ret Eye Res 1995; 15:231–259.

    Article  Google Scholar 

  24. Howard J, Blakeslee B, Laughlin SB. The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci 1987; 231:415–435.

    Article  PubMed  CAS  Google Scholar 

  25. Roebroek JGH, Stavenga DG. Insect pupil mechanisms. IV. Spectral characteristics and light intensity dependence in the blowfly, Calliphora erythrocephala. J Comp Physiol A 1990; 166:537–543.

    Article  Google Scholar 

  26. Boschek CB. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch Mikrosk Anat 1971; 118:369–409.

    Article  PubMed  CAS  Google Scholar 

  27. Walz B. Calcium-sequestering smooth endoplasmic reticulum in retinula cells of the blowfly. J Ultrastruct Res 1982; 81:240–248.

    Article  PubMed  CAS  Google Scholar 

  28. Matsumoto-Suzuki E, Hirosawa K, Hotta Y. Structure of the subrhabdomeric cisternae in the photoreceptor cells of Drosophila melanogaster. J Neurocytol 1989; 18:87–93.

    Article  PubMed  CAS  Google Scholar 

  29. Hamdorf K, Hochstrate P, Höglund G et al. Light activation of the sodium pump in blowfly photoreceptors. J Comp Physiol A 1988; 162:285–300.

    Article  Google Scholar 

  30. Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. The metabolic cost of neural information. Nat Neurosci 1998; 1:36–41.

    Article  PubMed  CAS  Google Scholar 

  31. Trujillo-Cenóz O, Melamed J. Electron microscope observations on the peripheral and intermediate retinas of dipterans. In: Bernard CG, ed. The functional organization of the compound eye. Oxford: Pergamon, 1966:339–361.

    Google Scholar 

  32. Suzuki E, Katayama E, Hirosawa K. Structure of photoreceptive membranes of Drosophila compound eyes as studied by quick-freezing electron microscopy. J Electron Microsc (Tokyo) 1993; 42:178–184.

    CAS  Google Scholar 

  33. Postma M, Oberwinkler J, Stavenga DG. Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? Biophys J 1999; 77:1811–1823.

    Article  PubMed  CAS  Google Scholar 

  34. Blest AD, Stowe S, Eddey W. A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res 1982; 223:553–573.

    Article  PubMed  CAS  Google Scholar 

  35. Arikawa K, Hicks JL, Williams DS. Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J Cell Biol 1990; 110:1993–1998.

    Article  PubMed  CAS  Google Scholar 

  36. Hamdorf K. The physiology of invertebrate visual pigments. In: Antrum H, ed. Handbook of sensory physiology, Vol. VII/6A. Berlin: Springer, 1979:145–224.

    Google Scholar 

  37. Porter JA, Yu M, Doberstein SK et al. Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 1993; 262:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  38. Huber A, Sander P, Gobert A et al. The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mdiated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J 1996; 15:7036–7045.

    PubMed  CAS  Google Scholar 

  39. Devary 0, Heichal O, Blumenfeld A et al. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Nati Acad Sci USA 1987; 84:6939–6943.

    Article  CAS  Google Scholar 

  40. Kirschfeld K. Discrete and graded receptor potentials in the compound eye of the fly (Musca). In: Bernhard CG, ed. The functional organization of the compound eye. Oxford: Pergamon, 1966:291–307.

    Google Scholar 

  41. Wu CF, Pak WL. Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster. J Gen Physiol 1975; 66:149–168.

    Article  PubMed  CAS  Google Scholar 

  42. Hardie RC. Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels. Proc R Soc Lond B 1991; 245:203–210.

    Article  Google Scholar 

  43. Henderson SR, Reuss H, Hardie RC. Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol 2000; 524:179–194.

    Article  PubMed  CAS  Google Scholar 

  44. Martin AR. A further study of the statistical composition of the end-plate potential. J Physiol 1955; 130:114–122.

    PubMed  CAS  Google Scholar 

  45. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech 1977; 3:59–64.

    Article  PubMed  CAS  Google Scholar 

  46. Wu CF, Pak WL. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J Gen Physiol 1978; 71:249–268.

    Article  PubMed  CAS  Google Scholar 

  47. Wong F, Knight BW. Adapting-bump model for eccentric cells of Limulus. J Gen Physiol 1980; 76:539–557.

    Article  PubMed  CAS  Google Scholar 

  48. Juusola M, Hardie RC. Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 C. J Gen Physiol 2001; 117:3–25.

    Article  PubMed  CAS  Google Scholar 

  49. Wong F, Knight BW, Dodge FA. Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol 1982; 79:1089–1113.

    Article  PubMed  CAS  Google Scholar 

  50. Ranganathan R, Harris GL, Stevens CF et al. A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature 1991; 354:230–232.

    Article  PubMed  CAS  Google Scholar 

  51. Hochstrate P, Hamdorf K. Microvillar components of light adaptation in blowflies. J Gen Physiol 1990; 95:891–910.

    Article  PubMed  CAS  Google Scholar 

  52. Scott K, Sun Y, Beckingham K et al. Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 1997; 91:375–383.

    Article  PubMed  CAS  Google Scholar 

  53. Scott K, Zuker CS. Assembly of the Drosophila phototransduction cascade into a signalling complexshapes elementary responses. Nature 1998; 395:805–808.

    Article  PubMed  CAS  Google Scholar 

  54. Hardie RC. Phototransduction in Drosophila melanogaster. J Exp Biol 2001; 204:3403–3409.

    PubMed  CAS  Google Scholar 

  55. Schraermeyer U, Polyanovsky A, Pivovarova N et al. Extracellular compartments of the blowfly eye: ionic content and topology. Vis Neurosci 1999; 16:461–474.

    Article  PubMed  CAS  Google Scholar 

  56. Sandler C, Kirschfeld K. Light intensity controls extracellular Ca2+ concentration in the blowfly retina. Naturwissenschaften 1988; 75:256–258.

    Article  Google Scholar 

  57. Ziegler A, Walz B. Analysis of extracellular calcium and volume changes in the compound eye of the honeybee drone, Apis mellifera. J Comp Physiol A 1989; 165:697–709.

    Article  Google Scholar 

  58. Muijser H. The receptor potential of retinular cells of the blowfly Calliphora: the role of sodium, potassium and calcium ions. J Comp Physiol 1979; 132:87–95.

    Article  CAS  Google Scholar 

  59. Kirschfeld K, Vogt K. Calcium ions and pigment migration in fly photoreceptors. Naturwissenschaften 1980; 67:516–517.

    Article  CAS  Google Scholar 

  60. Lo MC, Pak WL. Light-induced pigment migration in the retinula cells of Drosophila melanogaster. Comparison of wild type with ERG-defective mutants. J Gen Physiol 1981; 77:155–175.

    Article  PubMed  CAS  Google Scholar 

  61. Howard J. Calcium enables photoreceptor pigment migration in a mutant fly. J Exp Biol 1984; 113:471–475.

    Google Scholar 

  62. Hofstee CA, Stavenga DG. Calcium homeostasis in photoreceptor cells of Drosophila mutant inaC and trp studied with the pupil mechanism. Vis Neurosci 1996; 13:257–263.

    Article  PubMed  CAS  Google Scholar 

  63. Sandler C, Kirschfeld K. Light-induced extracellular calcium and sodium concentration changes in the retina of Calliphora: involvement in the mechanism of light adaptation. J Comp Physiol A 1991; 169:299–311.

    Article  Google Scholar 

  64. Rom-Glas A, Sandler C, Kirschfeld K et al. The nss mutation or lanthanum inhibits light-induced Ca2+ influx into fly photoreceptors. J Gen Physiol 1992; 100:767–781.

    Article  PubMed  CAS  Google Scholar 

  65. Peretz A, Suss-Toby E, Rom-Glas A et al. The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specific mutations. Neuron 1994; 12:1257–1267.

    Article  PubMed  CAS  Google Scholar 

  66. Hardie RC, Minke B. The tip gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 1992; 8:643–651.

    Article  PubMed  CAS  Google Scholar 

  67. Reuss H, Mojet MH, Chyb S et al. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 1997; 19:1249–1259.

    Article  PubMed  CAS  Google Scholar 

  68. Peretz A, Sandler C, Kirschfeld K et al. Genetic dissection of light-induced Ca2+ influx into Drosophila photoreceptors. J Gen Physiol 1994; 104:1057–1077.

    Article  PubMed  CAS  Google Scholar 

  69. Ranganathan R, Bacskai BJ, Tsien RY et al. Cytosolic calcium transients: spatial localization and role in Drosophila photoreceptor cell function. Neuron 1994; 13:837–848.

    Article  PubMed  CAS  Google Scholar 

  70. Hardie RC. INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J Neurosci 1996; 16:2924–2933.

    PubMed  CAS  Google Scholar 

  71. Hardie RC. A quantitative estimate of the maximum amount of light-induced Ca2+ release in Drosophila photoreceptors. J Photochem Photobiol B 1996; 35:83–89.

    Article  PubMed  CAS  Google Scholar 

  72. Niemeyer BA, Suzuki E, Scott K et al. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 1996; 85:651–659.

    Article  PubMed  CAS  Google Scholar 

  73. Hardie RC, Reuss H, Lansdell SJ et al. Functional equivalence of native light-sensitive channels in the Drosophila trp301 mutant and TRPL cation channels expressed in a stably transfected Drosophila cell line. Cell Calcium 1997; 21:431–440.

    Article  PubMed  CAS  Google Scholar 

  74. Xu XZ, Li HS, Guggino WB et al. Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 1997; 89:1155–1164.

    Article  PubMed  CAS  Google Scholar 

  75. Paulsen R, Bähner M, Huber A. The PDZ assembled “transducisome” of microvillar photoreceptors: the TRP/TRPL problem. Pflägers Arch 2000; 439:R181–R183.

    Article  CAS  Google Scholar 

  76. Hardie RC, Mojet MH. Magnesium-dependent block of the light-activated and trp-dependent conductance in Drosophila photoreceptors. J Neurophysiol 1995; 74:2590–2599.

    PubMed  CAS  Google Scholar 

  77. Montell C. Visual transduction in Drosophila. Annu Rev Cell Dev Biol 1999; 15:231–268.

    Article  PubMed  CAS  Google Scholar 

  78. Xu XZ, Chien F, Butler A et al. TRPy, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 2000; 26:647–657.

    Article  PubMed  CAS  Google Scholar 

  79. Gillo B, Chorna I, Cohen H et al. Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc Natl Acad Sci USA 1996; 93:14146–14151.

    Article  PubMed  CAS  Google Scholar 

  80. Li C, Geng C, Leung HT et al. INAF, a protein required for transient receptor potential Ca2+ channel function. Proc Natl Acad Sci USA 1999; 96:13474–13479.

    Article  PubMed  CAS  Google Scholar 

  81. Oberwinkler J, Stavenga DG. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors. Proc Natl Acad Sci USA 2000; 97:8578–8583.

    Article  PubMed  CAS  Google Scholar 

  82. Pollock JA, Assaf A, Peretz A et al. TRP, a protein essential for inositide-mediated Ca2+ influx is localized adjacent to the calcium stores in Drosophila photoreceptors. J Neurosci 1995; 15:3747–3760.

    PubMed  CAS  Google Scholar 

  83. Polyanovsky AD, Hardie RC, Krause K. The TRP protein in Drosophila photoreceptors: an immunogold localization of the light-sensitive calcium-permeable channel. J Evol Biochem Physiol 1999; 35:506–515.

    Google Scholar 

  84. Berridge M. Inositol trisphosphate and calcium signalling. Nature 1993; 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  85. Yoshioka T, Inoue H, Hotta Y. Absence of phosphatidylinositol phosphodiesterase in the head of a Drosophila visual mutant, norpA (no receptor potential A). J Biochem (Tokyo) 1985; 97:1251–1254.

    CAS  Google Scholar 

  86. Inoue H, Yoshioka T, Hotta Y. A genetic study of inositol trisphosphate involvement in phototransduction using Drosophila mutant. Biochem Biophys Res Commun 1985; 132:513–519.

    Article  PubMed  CAS  Google Scholar 

  87. Pearn MT, Randall LL, Shortridge RD et al. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J Biol Chem 1996; 271:4937–4945.

    Article  PubMed  CAS  Google Scholar 

  88. Cook B, Bar-Yaacov M, Cohen Ben-Ami H et al. Phospholipase C and termination of G-protein-mediated signalling in vivo. Nat Cell Biol 2000; 2:296–301.

    Article  PubMed  CAS  Google Scholar 

  89. Schneuwly S, Burg M, Lending C et al. Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster. J Biol Chem 1991; 266:24314–24319.

    PubMed  CAS  Google Scholar 

  90. Hasan G, Rosbash M. Drosophila homologs of two mammalian intracellular Ca2+-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 1992; 116:967–975.

    PubMed  CAS  Google Scholar 

  91. Raghu P, Hasan G. The inositol 1,4,5-triphosphate receptor expression in Drosophila suggests a role for IP3 signalling in muscle development and adult chemosensory functions. Dev Biol 1995; 171:564–577.

    Article  PubMed  CAS  Google Scholar 

  92. Acharya JK, Jalink K, Hardy RW et al. InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 1997; 18:881–887.

    Article  PubMed  CAS  Google Scholar 

  93. Raghu P, Colley NJ, Webel R et al. Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol Cell Neurosci 2000; 15:429–445.

    Article  PubMed  CAS  Google Scholar 

  94. Baumann O. Distribution of ryanodine receptor Ca2+ channels in insect photoreceptor cells. J Comp Neurol 2000; 421:347–361.

    Article  PubMed  CAS  Google Scholar 

  95. Hardie RC, Raghu P. Activation of heterologously expressed Drosophila TRPL channels: Ca2+ is not required and InsP3 is not sufficient. Cell Calcium 1998; 24:153–163.

    Article  PubMed  CAS  Google Scholar 

  96. Sullivan KM, Scott K, Zuker CS et al. The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc Natl Acad Sci USA 2000; 97:5942–5947.

    Article  PubMed  CAS  Google Scholar 

  97. Arnon A, Cook B, Montell C et al. Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science 1997; 275:1119–1121.

    Article  PubMed  CAS  Google Scholar 

  98. Amon A, Cook B, Gillo B et al. Calmodulin regulation o light adaptation and store-operated dark current in Drosophila photoreceptors. Proc Natl AcadSci USA 1997; 94:5894–5899.

    Article  Google Scholar 

  99. Cook B, Minke B. TRP and calcium stores in Drosophila phototransduction. Cell Calcium 1999; 25:161–171.

    Article  PubMed  CAS  Google Scholar 

  100. Choma-Oman I, Joel-Almagor T, Ben-Ami HC et al. A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction. J Neurosci 2001; 21:2622–2629.

    Google Scholar 

  101. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999; 79:763–854.

    PubMed  CAS  Google Scholar 

  102. Schwarz EM, Benzer S. Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc Natl Acad Sci USA 1997; 94:10249–10254.

    Article  PubMed  CAS  Google Scholar 

  103. Haug-Collet K, Pearson B, Webel R et al. Cloning and characterization of a potassium-dependent sodium/calcium exchanger in Drosophila. J Cell Biol 1999; 147:659–670.

    Article  PubMed  CAS  Google Scholar 

  104. Hardie RC. Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors. J Neurosci 1995; 15:889–902.

    PubMed  CAS  Google Scholar 

  105. Hardie RC. Effects of intracellular Ca2+ chelation on the light response in Drosophila photoreceptors. J Comp Physiol A 1995; 177:707–721.

    Article  PubMed  CAS  Google Scholar 

  106. Hochstrate P. Electrogenic Na+-Ca2+ exchange contributes to the light response of fly photoreceptors. Z Naturforsch 1991; 46c:451–460.

    Google Scholar 

  107. Gerster U. A quantitative estimate of flash-induced Ca2+- and Nat-influx and Na+/ Ca2+-exchange in blowfly Calliphora photoreceptors. Vision Res 1997; 37:2477–2485.

    Article  PubMed  CAS  Google Scholar 

  108. Oberwinkler J, Stavenga DG. Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo. J Gen Physiol 1998; 112:113–124.

    Article  PubMed  CAS  Google Scholar 

  109. Hochstrate P, Juse A. Intracellular free calcium concentration in the blowfly retina studied by Fura-2. Cell Calcium 1991; 12:695–712.

    Article  PubMed  CAS  Google Scholar 

  110. Bauer PJ, Schauf H, Schwarzer A et al. Direct evidence of Na+/Ca2+ exchange in squid rhabdomeric membranes. Am J Physiol 1999; 276:C558–0565.

    PubMed  CAS  Google Scholar 

  111. Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 1998; 23:10–14.

    Article  PubMed  CAS  Google Scholar 

  112. Blaustein MP, Golovina VA. Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores. Trends Neurosci 2001; 24:602–608.

    Article  PubMed  CAS  Google Scholar 

  113. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol 2000; 529:57–68.

    Article  PubMed  CAS  Google Scholar 

  114. Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol 2000; 529:37–47.

    Article  PubMed  CAS  Google Scholar 

  115. Magyar A, Bakos E, Varadi A. Structure and tissue-specific expression of the Drosophila melanogaster organellar-type Ca2+-ATPase gene. Biochem J 1995; 310:757–763.

    PubMed  CAS  Google Scholar 

  116. Periz G, Fortini ME. Ca2+-ATPase function is required for intracellular trafficking of the Notch receptor in Drosophila. EMBO J 1999; 18:5983–5993.

    Article  PubMed  CAS  Google Scholar 

  117. Hardie RC. Excitation of Drosophila photoreceptors by BAPTA and ionomycin: evidence for capacitative Cal’ entry? Cell Calcium 1996; 20:315–327.

    Article  PubMed  CAS  Google Scholar 

  118. Mojet MH, Tinbergen J, Stavenga DG. Receptor potential and light-induced mitochondrial activation in blowfly photoreceptor mutants. J Comp Physiol A 1991; 168:305–312.

    Article  Google Scholar 

  119. Tsacopoulos M, Orkand RK, Coles JA et al. Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash. Nature 1983; 301:604–606.

    Article  PubMed  CAS  Google Scholar 

  120. Fein A, Tsacopoulos M. Activation of mitochondrial oxidative metabolism by calcium ions in Limulus ventral photoreceptor. Nature 1988; 331:437–440.

    Article  PubMed  CAS  Google Scholar 

  121. Ballinger DG, Xue N, Harshman KD. A Drosophila photoreceptor cell-specific protein, calphotin, binds calcium and contains a leucine zipper. Proc Natl Acad Sci USA 1993; 90:1536–1540.

    Article  PubMed  CAS  Google Scholar 

  122. Martin JH, Benzer S, Rudnicka M et al. Calphotin: a Drosophila photoreceptor cell calcium-binding protein. Proc Natl Acad Sci USA 1993; 90:1531–1535.

    Article  PubMed  CAS  Google Scholar 

  123. Yang Y, Ballinger D. Mutations in calphotin, the gene encoding a Drosophila photoreceptor cell-specific calcium-binding protein, reveal roles in cellular morphogenesis and survival. Genetics 1994; 138:413–421.

    PubMed  CAS  Google Scholar 

  124. Ukhanov KY. Ommochrome pigment granules: a calcium reservoir in the dipteran eyes. Comp Biochem Physiol 1991; 98A:9–16.

    Article  CAS  Google Scholar 

  125. Schröder W, Frings D, Stieve H. Measuring calcium uptake and release by invertebrate photoreceptor cells by laser micromass spectroscopy. Scan Electron Microsc 1980; 11:647–652.

    Google Scholar 

  126. White RH, Michaud NA. Calcium as a component of ommochrome pigment granules in insect eyes. Comp Biochem Physiol 1980; 65A:239–242.

    Article  CAS  Google Scholar 

  127. Laughlin SB, Hardie RC. Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J Comp Physiol 1978; 128:319–340.

    Article  Google Scholar 

  128. Oberwinkler J, Stavenga DG. Is the pupil mechanism of fly photoreceptors a useful calcium probe? In: Taddei-Ferretti C, Musio C, eds. From structure to information in sensory systems. Singapore: World Scientific, 1998:504–508.

    Google Scholar 

  129. Weckström M, Hardie RC, Laughlin SB. Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J Physiol 1991; 440:635–657.

    PubMed  Google Scholar 

  130. Hardie RC, Voss D, Pongs O et al. Novel potassium channels encoded by the Shaker locus in Drosophila photoreceptors. Neuron 1991; 6:477–486.

    Article  PubMed  CAS  Google Scholar 

  131. Hardie RC. Voltage-sensitive potassium channels in Drosophila photoreceptors. J Neurosci 1991; 11:3079–3095.

    PubMed  CAS  Google Scholar 

  132. Laughlin SB, Weckström M. Fast and slow photoreceptors-a comparative study of the functional diversity of coding and conductance in the Diptera. J Comp Physiol A 1993; 172:593–609.

    Article  Google Scholar 

  133. Minke B, Payne R. Spatial restriction of light adaptation and mutation-induced inactivation in fly photoreceptors. J Neurosci 1991; 11:900–909.

    PubMed  CAS  Google Scholar 

  134. Peretz A, Abitbol I, Sobko A et al. A Ca2+/calmodulin-dependent protein kinase modulates Drosophila photoreceptor K+ currents: a role in shaping the photoreceptor potential. J Neurosci 1998; 18:9153–9162.

    PubMed  CAS  Google Scholar 

  135. Oberwinkler J, Stavenga DG. Calcium transients in the rhabdomeres of dark-and light-adaptd fly photoreceptor cells. J Neurosci 2000; 20:1701–1709.

    PubMed  CAS  Google Scholar 

  136. Walz B, Zimmermann B, Seidl S. Intracellular Ca2+ concentration and latency of light-induced Ca2+ changes in photoreceptors of the honey bee drone. J Comp Physiol A 1994; 174:421–431.

    Article  CAS  Google Scholar 

  137. Ukhanov K, Payne R. Light activated calcium release in Limulus ventral photoreceptors as revealed by laser confocal microscopy. Cell Calcium 1995; 18:301–313.

    Article  PubMed  CAS  Google Scholar 

  138. Payne R, Ukhanov K. Latencies of calcium elevation and depolarization in Limulus ventral photoreceptors injected with GDP-13S. J Photochem Photobiol B 1996; 35:91–95.

    Article  PubMed  CAS  Google Scholar 

  139. Brown JE, Rubin LJ. A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. Biochem Biophys Res Commun 1984; 125:1137–1142.

    Article  PubMed  CAS  Google Scholar 

  140. Fein A, Payne R, Corson DW et al. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature 1984; 311:157–160.

    Article  PubMed  CAS  Google Scholar 

  141. Nasi E, del Pilar Gomez M, Payne R. Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. In: Stavenga DG, DeGrip WJ, Pugh EN jr, eds. Handbook of biological physics, Vol. 3: Molecular mechanisms in visual transduction. Amsterdam: Elsevier, 2000:389–448.

    Google Scholar 

  142. Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer, 1992.

    Google Scholar 

  143. Hardie RC, Raghu P, Moore S et al. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 2001; 30:149–159.

    Article  PubMed  CAS  Google Scholar 

  144. Minke B, Hardie RC. Genetic dissection of Drosophila phototransduction. In: Stavenga DG, DeGrip WJ, Pugh EN jr, eds. Handbook of biological physics, Vol. 3: Molecular mechanisms in visual transduction. Amsterdam: Elsevier, 2000:449–525.

    Google Scholar 

  145. Porter JA, Minke B, Montell C. Calmodulin binding to Drosophila NinaC required for termination of phototransduction. EMBO J 1995; 14:4450–4459.

    PubMed  CAS  Google Scholar 

  146. Yamanaka MK, Saugstad JA, Hanson-Painton O et al. Structure and expression of the Drosophila calmodulin gene. Nucleic Acids Res 1987; 15:335–3348.

    Article  Google Scholar 

  147. Doyle KE, Kovalick GE, Lee E et al. Drosophila melanogaster contains a single calmodulin gene. Further structure and expression studies. J Mol Biol 1990; 213:599–605.

    Article  PubMed  CAS  Google Scholar 

  148. Maune JF, Klee CB, Beckinghm K. Ca2+ binding and conformational change in two series of point mutations to the individual Ca2+-binding sites of calmodulin. J Biol Chin 1992; 267:5286–5295.

    CAS  Google Scholar 

  149. Martin SR, Maune JF, Beckingham K et al. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. Eur J Biochem 1992; 205:1107–1114.

    Article  PubMed  CAS  Google Scholar 

  150. Xu XZ, Wes PD, Chen H et al. Retinal targets for calmodulin include proteins implicated in synaptic transmission. J Biol Chem 1998; 273:31297–31307.

    Article  PubMed  CAS  Google Scholar 

  151. Hardie RC, Minke B. Spontaneous activation of light-snsitive channels in Drosophila photoreceptors. J Gen Physiol 1994; 103:389–407.

    Article  PubMed  CAS  Google Scholar 

  152. Hardie RC, Mnke B. Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. J Gen Physiol 1994; 103:409–427.

    Article  PubMed  CAS  Google Scholar 

  153. Agam K, von Campenhausen M, Levy S et al. Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. J Neurosci 2000; 20:5748–5755.

    PubMed  CAS  Google Scholar 

  154. Warr CG, Kelly LE. Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem J 1996; 314:497–503.

    PubMed  CAS  Google Scholar 

  155. Chevesich J, Kreuz AJ, Montell C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a sigaling complex. Neuron 1997; 18:95–105.

    Article  PubMed  CAS  Google Scholar 

  156. Trost C, Marquart A, Zimmer S et al. Ca2+-dependent interaction of the trpl cation channel and calmodulin. FEBS Lett 1999; 451:257–263.

    Article  PubMed  CAS  Google Scholar 

  157. Shieh BH, Zhu MY. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 1996; 16:991–998.

    Article  PubMed  CAS  Google Scholar 

  158. Tsunoda S, Sierralta J, Sun Y et al. A multivalent PDZ-domain protein assembles signallin complexes in a G-protein-coupled cascade. Nature 1997; 388:243–249.

    Article  PubMed  CAS  Google Scholar 

  159. van Huizen R, Miller K, Chen DM et al. Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J 1998; 17:2285–2297.

    Article  PubMed  CAS  Google Scholar 

  160. Li HS, Montell C. TRP and the PDZ protein, INAD, form the core complex required for retention of the signaiplex in Drosophila photoreceptor cells. J Cell Biol 2000; 150:1411–1422.

    Article  PubMed  CAS  Google Scholar 

  161. Tsunoda S, Sun Y, Suzuki E et al. Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors. J Neurosci 2001; 21:150–158.

    PubMed  CAS  Google Scholar 

  162. Xu XZ, Choudhury A, Li X et al. Coordination of an array of signaling proteins through homo-and heteromeric interactions between PDZ domains and target proteins. J Cell Biol 1998; 142:545–555.

    Article  PubMed  CAS  Google Scholar 

  163. Wes PD, Xu XZ, Li HS et al. Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat Neurosci 1999; 2:447–453.

    Article  PubMed  CAS  Google Scholar 

  164. Shieh BH, Niemeyer B. A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron 1995; 14:201–210.

    Article  PubMed  CAS  Google Scholar 

  165. Shieh BH, Zhu MY, Lee JK et al. Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo. Proc Natl Acad Sci USA 1997; 94:12682–12687.

    Article  PubMed  CAS  Google Scholar 

  166. Adamski FM, Zhu MY, Bahiraei F et al. Interaction of eye protein kinase C and INAD in Drosophila. Localization of binding domains and electrophysiological characterization of a loss of association in transgenic flies. J Biol Chem 1998; 273:17713–17719.

    Article  PubMed  CAS  Google Scholar 

  167. Huber A, Sander P, Paulsen R. Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. J Biol Chem 1996; 271:11710–11717.

    Article  PubMed  CAS  Google Scholar 

  168. Liu M, Parker LL, Wadzinski BE et al. Reversible phosphorylation of the signal transduction complex in Drosophila photoreceptors. J Biol Chem 2000; 275:12194–12199.

    Article  PubMed  CAS  Google Scholar 

  169. Hotta Y, Benzer S. Abnormal electroretinograms in visual mutants of Drosophila. Nature 1969; 222:354–356.

    Article  PubMed  CAS  Google Scholar 

  170. Pak W, Grossfield J, Arnold K. Mutants of the visual pathway of Drosophila melanogaster. Nature 1970; 227:518–520.

    Article  PubMed  CAS  Google Scholar 

  171. Toyoshima S, Matsumoto N, Wang P et al. Purification and partial amino acid sequences of phosphoinositide-specific phospholipase C of Drosophila eye. J Biol Chem 1990; 265:14842–14848.

    PubMed  CAS  Google Scholar 

  172. Running Deer JL, Hurley JB, Yarfitz SL. G protein control of Drosophila photoreceptor phospholipase C. J Biol Chem 1995; 270:12623–12628.

    Article  PubMed  CAS  Google Scholar 

  173. Rack M, Xhonneux-Cremers B, Schraermeyer U et al. On the Ca2+-dependence of inositol-phospholipid-specific phospholipase C of microvillar photoreceptors from Sepia officinalis. Exp Eye Res 1994; 58:659–664.

    Article  PubMed  CAS  Google Scholar 

  174. Richard EA, Ghosh S, Lowenstein JM et al. Ca2+/calmodulin-binding peptides block phototransduction in Limulus ventral photoreceptors: evidence for direct inhibition of phospholipase C. Proc Natl Acad Sci USA 1997; 94:14095–14099.

    Article  PubMed  CAS  Google Scholar 

  175. Schaeffer E, Smith D, Mardon G et al. Isolation and characterization o two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. Cell 1989; 57:403–412.

    Article  PubMed  CAS  Google Scholar 

  176. Smith DP, Ranganathan R, Hardy RW et al. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science 1991; 254:1478–1484.

    Article  PubMed  CAS  Google Scholar 

  177. Hardie RC, Peretz A, Suss-Toby E et al. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature 1993; 363:634–637.

    Article  PubMed  CAS  Google Scholar 

  178. Huber A, Sander P, Bähner M et al. The TRP Ca2+ channel assembled in a signaling cornplex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett 1998; 425:317–322.

    Article  PubMed  CAS  Google Scholar 

  179. Matsumoto H, Isono K, Pye Q et al. Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. Proc Natl Acad Sci USA 1987; 84:985–989.

    Article  PubMed  CAS  Google Scholar 

  180. Montell C, Rubin GM. The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 1988; 52:757–772.

    Article  PubMed  CAS  Google Scholar 

  181. Hicks JL, Williams DS. Distribution of the myosin I-like ninaC proteins in the Drosophila retina and ultrastructural analysis of mutant phenotypes. J Cell Sci 1992; 101:247–254.

    PubMed  CAS  Google Scholar 

  182. Porter JA, Hicks JL, Williams DS et al. Differential localizations of and requirements for the two Drosophila -ninaC kinase/myosins in photoreceptor cells. J Cell Biol 1992; 116:683–693.

    Article  PubMed  CAS  Google Scholar 

  183. Li HS, Porter JA, Montell C. Requirement for the NINAC kinase/myosin for stable termination of the visual cascade. J Neurosci 1998; 18:9601–9606.

    PubMed  CAS  Google Scholar 

  184. Porter JA, Montell C. Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. J Cell Biol 1993; 122:601–612.

    Article  PubMed  CAS  Google Scholar 

  185. Hicks JL, Liu X, Williams DS. Role of the ninaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton 1996; 35:367–379.

    Article  PubMed  CAS  Google Scholar 

  186. Hofstee CA, Henderson S, Hardie RC et al. Differential effects of ninaC proteins (p132 and p174) on light-activated currents and pupil mechanism in Drosophila photoreceptors. Vis Neurosci 1996; 13:897–906.

    Article  PubMed  CAS  Google Scholar 

  187. Chyb S, Hevers W, Forte M et al. Modulation of the light response by cAMP in Drosophila photoreceptors. J Neurosci 1999; 19:8799–8807.

    PubMed  CAS  Google Scholar 

  188. Dolph PJ, Ranganathan R, Colley NJ et al. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 1993; 260:1910–1916.

    Article  PubMed  CAS  Google Scholar 

  189. Plangger A, Malicki D, Whitney M et al. Mechanism of arrestin 2 function in rhabdomeric photoreceptors. J Biol Chem 1994; 269:26969–26975.

    PubMed  CAS  Google Scholar 

  190. Ranganathan R, Stevens CF. Arrestin binding determines the rate of inactivation of the G protein-coupled receptor rhodopsin in vivo. Cell 1995; 81:841–848.

    Article  PubMed  CAS  Google Scholar 

  191. Yamada T, Takeuchi Y, Komori N et al. A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science 1990; 248:483–486.

    Article  PubMed  CAS  Google Scholar 

  192. LeVine H 3rd, Smith DP, Whitney M et al. Isolation of a novel visual-system-specific arrestin: an in vivo substrate for light-dependent phosphorylation. Mech Dev 1990; 33:19–25.

    Article  PubMed  CAS  Google Scholar 

  193. Hyde D, Mecklenburg K, Pollock J et al. Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin. Proc Natl Acad Sci USA 1990; 87:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  194. Smith DP, Shieh BH, Zuker CS. Isolation and structure of an arrestin gene from Drosophila. Proc Natl Acad Sci USA 1990; 87:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  195. Matsumoto H, Yamada T. Phosrestins I and II: arrestin homologs which undergo differential light-induced phosphorylation in the Drosophila photoreceptor in vivo. Biochem Biophys Res Commun 1991; 177:1306–1312.

    Article  PubMed  CAS  Google Scholar 

  196. Bentrop J, Plangger A, Paulsen R. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase. Eur J Biochem 1993; 216:67–73.

    Article  PubMed  CAS  Google Scholar 

  197. Alloway PG, Dolph PJ. A role for the light-dependent phosphorylation of visual arrestin. Proc Natl Acad Sci USA 1999; 96:6072–6077.

    Article  PubMed  CAS  Google Scholar 

  198. Matsumoto H, O’Tousa JE, Pak WL. Light-induced modification of Drosophila retinal polypeptides in vivo. Science 1982; 217:839–841.

    Article  PubMed  CAS  Google Scholar 

  199. Matsumoto H, Pak W. Light-induced phosphorylation of retina-specific polypeptides of Drosophila in vivo. Science 1984; 223:184–186.

    Article  PubMed  CAS  Google Scholar 

  200. Matsumoto H, Kurien BT, Takagi Y et al. Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron 1994; 12:997–1010.

    Article  PubMed  CAS  Google Scholar 

  201. Kahn ES, Matsumoto H. Calcium/calmodulin-dependent kinase II phosphorylates Drosophila visual arrestin. J Neurochem 1997; 68:169–175.

    Article  PubMed  CAS  Google Scholar 

  202. Kahn ES, Kinum T, Tobin SL et al. Phosrestide-1, a peptide derived from the Drosophila photoreceptor protein phosrestin I, is a potent substrat for Ca2+/calmodulin-dependent protein kinase II from rat brain. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:739–746.

    Article  PubMed  CAS  Google Scholar 

  203. Ohsako S, Nishida Y, Ryo H et al. Molecular characterization and expression of the Drosophila Ca2+/calmodulin-dependent protein kinase II ene. Identification of four forms of the enzyme generated from a single gene by alternative splicing. J Biol Chem 1993; 268:2052–2062.

    PubMed  CAS  Google Scholar 

  204. Byk T, Bar-Yaacov M, Doza YN et al. Regulatory arrestin cycle secures the fideity and maintenance of the fly photoreceptor cell. Proc Natl Acad Sci USA 1993; 90:1907–1911.

    Article  PubMed  CAS  Google Scholar 

  205. Steele FR, Washburn T, Rieger R et al. Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase. Cell 1992; 69:669–676.

    Article  PubMed  CAS  Google Scholar 

  206. Vinós J, Jalink K, Hardy RW et al. A G protein-coupled receptor phosphatase required for rhodopsin function. Science 1997; 277:687–690.

    Article  PubMed  Google Scholar 

  207. Lee SJ, Montell C. Regulation of the rodopsin protein posphatase, RDGC, through interaction with calmodulin. Neuron 2001; 32:1097–1106.

    Article  PubMed  CAS  Google Scholar 

  208. Vallet AM, Coles JA. A method for estimating the minimum visual stimulus that evokes a behavioural response in the drone, Apis mellifera male. Vision Res 1991; 31:1453–1455.

    Article  PubMed  CAS  Google Scholar 

  209. Coles JA, Vallet AM. Signal-to-noise atio at high light intensities in drone photoreceptors. Neurosci Res Suppl 1991; 15:S1–11.

    PubMed  CAS  Google Scholar 

  210. Vallet AM, Coles JA. Is the membrane voltage amplifier of drone photoreceptors useful at physiological light intensities? J Comp Physiol A 1993; 173:163–168.

    Article  Google Scholar 

  211. Perrelet A, Bader CR. Morphological evidence for calcium stores in photoreceptors of the honeybee drone retina. J Ultrastruct Res 1978; 63:237–243.

    Article  PubMed  CAS  Google Scholar 

  212. Baumann O, Walz B. Calcium-and inositol polyphosphate-sensitivity of the calcium-sequestering endoplasmic reticulum in the photoreceptor cells of the honeybee drone. J Comp Physiol A 1989; 165:627–636.

    Article  Google Scholar 

  213. Baumann O, Walz B. Topography of Ca2+-sequestering endoplasmic reticulum in photoreceptors and pigmented glial cells in the compound eye of the honeybee drone. Cell Tissue Res 1989; 255:511–522.

    Article  Google Scholar 

  214. Bezprozvanny I, Watras J, Ehrlich B. Bell-shaped calcium-response curves of Ins(1,4,5)P3and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351:751–754.

    Article  PubMed  CAS  Google Scholar 

  215. Walz B, Baumann O, Zimmermann B et al. Caffeine-and ryanodine-sensitive Ca2+-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors. J Gen Physiol 1995; 105:537–567.

    Article  PubMed  CAS  Google Scholar 

  216. Baumann O. Disruption of actin filaments causes redistribution of ryanodine receptor Ca2+ channels in honeybee photoreceptor cells. Neurosci Lett 2001; 306:181–184.

    Article  PubMed  CAS  Google Scholar 

  217. Perrelet A. The fine structure of the retina of the honey bee drone. An electron microscopical study. Z Zellforsch Mikrosk Anat 1970; 108:530–562.

    Article  PubMed  CAS  Google Scholar 

  218. Ziegler A, Walz B. Evidence for light-induced release of Ca2+ from intracellular stores in bee photoreceptors. Neurosci Lett 1990; 111:87–91.

    Article  PubMed  CAS  Google Scholar 

  219. Walz B, Ukhanov K, Zimmermann B. Actions of neomycin on electrical light responses, Ca2+ release, and intracellular Ca2+ changes in photoreceptors of the honeybee drone. J Comp Physiol A 2000; 186:1019–1029.

    Article  PubMed  CAS  Google Scholar 

  220. Minke B, Tsacopoulos M. Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina. Vision Res 1986; 26:679–690.

    Article  PubMed  CAS  Google Scholar 

  221. Bader C, Baumann F, Bertrand D. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L). J Gen Physiol 1976; 67:475–491.

    Article  PubMed  CAS  Google Scholar 

  222. Fulpius B, Baumann F. Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells. J Gen Physiol 1969; 53:541–561.

    Article  PubMed  CAS  Google Scholar 

  223. Bader CR, Baumann F, Bertrand D et al. Diffuse and local effects of light adaptation in photoreceptors of the honey bee drone. Vision Res 1982; 22:311–317.

    Article  PubMed  CAS  Google Scholar 

  224. Raggenbass M. Effects of extracellular calcium and of light adaptation on the response to dim light in honey bee drone photoreceptors. J Physiol 1983; 344:525–548.

    PubMed  CAS  Google Scholar 

  225. Hochstrate P, Hamdorf K. The influence of extracellular calcium on the response of fly photoreceptors. J Comp Physiol A 1985; 156:53–64.

    Article  Google Scholar 

  226. Walz B. Enhancement of sensitivity in photoreceptors of the honey been drone by light and by Ca2+. J Comp Physiol A 1992; 170:605–613.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oberwinkler, J. (2002). Calcium Homeostasis in Fly Photoreceptor Cells. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics