Skip to main content

On Bipolar Cells: Following in the Footsteps of Phototransduction

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

The electrical signals resulting from phototransduction are decomposed by bipolar cells and then encoded into spike trains by ganglion cells. The signal decomposition by bipolar cells includes formation of ON and OFF pathways and separation of tonic and phasic signals. The decomposition is accomplished by post-synaptic receptors in the ON and OFF bipolar cells. This chapter focuses on these phenomena in ON bipolar cells and the role of metabotropic glutamate receptors in these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murakami M, Otsuka T, Shimazaki H. Effects of aspartate and glutamate on the bipolar cells in the carp retina. Vision Res 1975; 15:456–458.

    Article  PubMed  CAS  Google Scholar 

  2. Shiells RA, Falk G. A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal `on’ bipolar cells. J Physiol 1999; 514:343–350.

    Article  PubMed  CAS  Google Scholar 

  3. Nawy S. Regulation of the ON bipolar cell mGluR6 pathway by Ca2+. J Neurosci 2000; 20:4471–4479.

    PubMed  CAS  Google Scholar 

  4. Nawy S, Jahr CE. cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter. Neuron 1991; 7:677–683.

    Article  PubMed  CAS  Google Scholar 

  5. .Shiells RA, Falk G. Responses of rod bipolar cells isolated from dogfish retinal slices to concentration jumps of glutamate. Vis Neurosci 1994; 11:1175–1183.

    Article  PubMed  CAS  Google Scholar 

  6. Vardi N. Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J Comp Neurol 1998; 395:43–52.

    Article  PubMed  CAS  Google Scholar 

  7. Dhingra A, Lyubarsky A, Jiang M et al. The light response of ON bipolar neurons requires G[alpha]o. J Neurosci 2000; 20:9053–9058.

    PubMed  CAS  Google Scholar 

  8. Nawy S. The metabotropic receptor mGluR6 may signal through G(o), but not phosphodiesterase, in retinal bipolar cells. J Neurosci 1999; 19:2938–2944.

    PubMed  CAS  Google Scholar 

  9. Nomura A, Shigemoto R, NakamuraY et al. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 1994; 77:361–369.

    Article  PubMed  CAS  Google Scholar 

  10. Slaughter MM, Miller RF. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 1981; 211:182–185.

    Article  PubMed  CAS  Google Scholar 

  11. Tian N, Slaughter MM. Pharmacological similarity between the retinal APB receptor and the family of metabotropic glutamate receptors. J Neurophysiol 1994; 71:2258–2268.

    PubMed  CAS  Google Scholar 

  12. Morigiwa K, Vardi N. Differential expression of ionotropic glutamate receptor subunits in the outer retina. J Comp Neurol 1999; 405:173–184.

    Article  PubMed  CAS  Google Scholar 

  13. Nawy S, Copenhagen DR. Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 1987; 325:56–58.

    Article  PubMed  CAS  Google Scholar 

  14. Slaughter MM, Miller RF. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 1981; 211:182–185.

    Article  PubMed  CAS  Google Scholar 

  15. Bloomfield SA, Dowling JE. Roles of aspartate and glutamate in synaptic transmission in rabbit retina. I. Outer plexiform layer. J Neurophysiol. 1985; 53:699–713.

    PubMed  CAS  Google Scholar 

  16. Tian N, Slaughter MM. Functional properties of a metabotropic glutamate receptor at dendritic synapses of ON bipolar cells in the amphibian retina. Vis Neurosci 1995; 12:755–765.

    Article  PubMed  CAS  Google Scholar 

  17. Tian N, Slaughter MM. Functional properties of a metabotropic glutamate receptor at dendritic synapses of ON bipolar cells in the amphibian retina. Vis Neurosci 1995; 12:755–765.

    Article  PubMed  CAS  Google Scholar 

  18. Ashmore JF, FalkG. The single-photon signal in rod bipolar cells of the dogfish retina. J Physiol. 1980; 300:151–166.

    PubMed  CAS  Google Scholar 

  19. Ashmore JF, Copenhagen DR. Different postsynaptic events in two types of retinal bipolar cell. Nature 1980; 288:84–86.

    Article  PubMed  CAS  Google Scholar 

  20. Yang XL, Wu SM. Synaptic transmission from rods to rod-dominated bipolar cells in the tiger salamander retina. Brain Res 1993; 613:275–280.

    Article  PubMed  CAS  Google Scholar 

  21. Werblin FS, Dowling JE. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 1969; 32:339–355.

    PubMed  CAS  Google Scholar 

  22. Maguire G, Maple B, Lukasiewicz P et al. Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc Natl Acad Sci USA 1989; 86:10144–10147.

    Article  PubMed  CAS  Google Scholar 

  23. Werblin F, Maguire G, Lukasiewicz P et al. Neural interactions mediating the detection of motion in the retina of the tiger salamander. Vis Neurosci 1988; 1:317–329.

    Article  PubMed  CAS  Google Scholar 

  24. Lukasiewicz PD, Werblin FS. A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. J Neurosci 1994; 14:1213–1223.

    PubMed  CAS  Google Scholar 

  25. Lukasiewicz PD, Maple BR, Werblin FS. A novel GABA receptor ON bipolar cell terminals in the tiger salamander retina. J Neurosci 1994; 14:1202–1212.

    Google Scholar 

  26. Jacobs AL, Werblin FS. Spatiotemporal patterns at the retinal output. J Neurophysiol 1998; 80:447–451.

    PubMed  CAS  Google Scholar 

  27. Pan ZH. Differential expression of high-and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J Neurophysiol 2000; 83:513–527.

    PubMed  CAS  Google Scholar 

  28. Pan ZH. Voltage-activated Ca2+ channels and ionotropic GABA receptors localized at axon terminals of mammalian retinal bipolar cells. Vis Neurosci 2001; 18:279–288.

    Article  PubMed  CAS  Google Scholar 

  29. Lukasiewicz PD, Lawrence JE, Valentino TL. Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells. J Neurosci 1995; 15:6189–6199.

    PubMed  CAS  Google Scholar 

  30. Mobbs P, Everett K, Cook A. Signal shaping by voltage-gated currents in retinal ganglion cells. Brain Res 1992; 574:217–223.

    Article  PubMed  CAS  Google Scholar 

  31. Awatramani GB, Slaughter MM. Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci 2000; 20:7087–7095.

    PubMed  CAS  Google Scholar 

  32. Thoreson WB, Gottesman J, Jane DE et al. Two phenylglycine derivatives antagonize responses to L-AP4 in ON bipolar cells of the amphibian retina. Neuropharmacol 1997; 36:13–20.

    Article  CAS  Google Scholar 

  33. Awatramani GB, Slaughter MM. Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci 2000; 20:7087–7095.

    PubMed  CAS  Google Scholar 

  34. Dowling JE, Werblin FS. Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J Neurophysiol 1969; 32:315–338.

    PubMed  CAS  Google Scholar 

  35. DeVries SH. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 2000; 28:847–856.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slaughter, M.M., Awatramani, G.B. (2002). On Bipolar Cells: Following in the Footsteps of Phototransduction. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics