Skip to main content

Site-Directed and Natural Mutations in Studying Functional Domains in Guanylyl Cyclase Activating Proteins (GCAPs)

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

Guanylyl cyclase activating proteins (GCAPs) are Ca2+-binding proteins of the EF-hand superfamily, through which the intracellular calcium regulates cGMP synthesis in vertebrate photoreceptors. GCAPs play an essential role in the calcium feedback mechanism that controls recovery and light adaptation of rods and cones. Moreover, mutations in at least one of the GCAPs have already been linked to two forms of congenital human retinal diseases. The GCAPs represent a separate small subfamily among the EF-hand proteins that are structurally similar to recoverin, but demonstrate a number of unique regulatory properties. When in the Ca2+-free conformation (as in light-adapted photoreceptors), GCAPs stimulate photoreceptor membrane guanylyl cyclase (retGC), but when the intracellular free Ca2+concentrations ([Ca2+]free) rise (as in dark-adapted photoreceptors), GCAPs turn into retGC inhibitors. In GCAPs, site-directed mutagenesis has been successfully used to identify a number of structural elements that contribute to their specific function as guanylyl cyclase regulators. These elements include EF-hand Ca2+-binding loops and various other regions in the GCAP primary structure involved in multiple protein-protein interactions within the retGC/GCAP complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pugh EN Jr, Lamb, TD. Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1993; 1141:111–149.

    Article  PubMed  CAS  Google Scholar 

  2. Baylor D. How photons start vision. Proc Natl Mad Sci USA 1996; 93:560–565.

    Article  CAS  Google Scholar 

  3. Pugh EN Jr, Nikonov S, LambTD. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 1999; 9:410–418.

    Article  PubMed  CAS  Google Scholar 

  4. Gray-Keller MP, Detwiler PB. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 1994; 13:849–861

    Article  PubMed  CAS  Google Scholar 

  5. Sampath AP, Matthews HR, Cornwall MC et al. Light-dependent changes in outer segment free-Ca2+ concentration in salamander cone photoreceptors. J Gen Physiol 1999; 113:267–77.

    Article  PubMed  CAS  Google Scholar 

  6. Koch KW, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 1988; 334:64–66

    Article  PubMed  CAS  Google Scholar 

  7. Pugh EN Jr, Duda T, Sitaramayya A et al. Photoreceptor guanylate cyclases: a review. Biosci Rep 1997; 17:429–473.

    Article  PubMed  CAS  Google Scholar 

  8. Dizhoor AM. Regulation of cGMP synthesis in photoreceptors: role in signal transduction and congenital diseases of the retina. Cell Signal 2000; 12:711–9.

    Article  PubMed  CAS  Google Scholar 

  9. Palczewski K, Polans AS, Baehr W et al. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 2000; 22:337–50.

    Article  PubMed  CAS  Google Scholar 

  10. Yang RB, Foster DC, Garbers DL et al. Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 1995; 92:602–606.

    Article  PubMed  CAS  Google Scholar 

  11. Lowe DG, Dizhoor AM, Liu K et al. Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 1995; 92:5535–5539.

    Article  PubMed  CAS  Google Scholar 

  12. Gorczyca WA, Gray-Keller MP, Detwiler PB et al. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci USA 1994; 91:4014–4018.

    Article  PubMed  CAS  Google Scholar 

  13. Dizhoor AM, Lowe DG, Olshevskaya EV et al. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 1994; 12:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  14. Dizhoor AM, Olshevskaya EV, Henzel WJ et al. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 1995; 270:25200–25206.

    Article  PubMed  CAS  Google Scholar 

  15. Gorczyca WA, Polans AS, Surgucheva IG et al, Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 1995; 270:22029–22036.

    Article  PubMed  CAS  Google Scholar 

  16. Haeseleer F, Sokal I, Li N et al. Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem 1999; 274:6526–6535.

    Article  PubMed  CAS  Google Scholar 

  17. Nef P. Neuron-specific calcium-sensors. In: Celio MR, Pauls TL, Shwaller B, eds. Guidebook to the Calcium-Binding Proteins. New York: Oxford University Press, 1996:15–20.

    Google Scholar 

  18. Palczewski K, Subbaraya I, Gorczyca WA et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 1994; 13:395–404.

    Article  PubMed  CAS  Google Scholar 

  19. Olshevskaya EV, Hughes RE, Hurley JB et al. Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 1997; 272:14327–14333.

    Article  PubMed  CAS  Google Scholar 

  20. Ames JB, Dizhoor AM, Ikura M et al. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem 1999; 274:19329–19337.

    Article  PubMed  CAS  Google Scholar 

  21. Strynadka NC, James MN. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 1989; 58:951–998.

    Article  PubMed  CAS  Google Scholar 

  22. Babu A, Su H, Ryu Y et al. Determination of residue specificity in the EF-hand of troponin C for Ca2+ coordination, by genetic engineering. J Biol Chem 1992; 267:15469–15474.

    PubMed  CAS  Google Scholar 

  23. Dizhoor AM, Hurley JB. Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced “activator-to-inhibitor” transition. J Biol Chem 1996; 271:19346–50.

    Article  PubMed  CAS  Google Scholar 

  24. Rudnicka-Nawrot M, Surgucheva I, Hulmes J et al, Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium. Biochemistry. 1998; 37:248–257.

    Article  PubMed  CAS  Google Scholar 

  25. Otto-Bruc A, Buczylko J, Surgucheva I et al. Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1. Biochemistry 1997; 36:4295–4302.

    Article  PubMed  CAS  Google Scholar 

  26. Flaherty KM, Zozulya S, Stryer L et al. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 1993; 75:709–716.

    Article  PubMed  CAS  Google Scholar 

  27. Vijay-Kumar S, Kumar VD Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol 1999; 6:80–8.

    Article  PubMed  CAS  Google Scholar 

  28. Krylov DM, Niemi GA, Dizhoor AM et al. Mapping sites in guanylyl cyclase activating protein-1 required for regulation of photoreceptor membrane guanylyl cyclases. J Biol Chem 1999; 274:10833–9.

    Article  PubMed  CAS  Google Scholar 

  29. Olshevskaya EV, Boikov S, Ermilov A et al. Mapping functional domains of the guanylate cyclase regulator protein, GCAP-2. J Biol Chem 1999; 274:10823–10832.

    Article  PubMed  CAS  Google Scholar 

  30. Kawasaki H, Kretsinger RH. Calcium-binding proteins. 1: EF-hands. Protein Profile 1994; 1:343–517.

    Google Scholar 

  31. Dizhoor AM, Hurley JB. Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. Methods 1999; 19:521–31.

    Article  PubMed  CAS  Google Scholar 

  32. Ermilov AN, Olshevskaya EV, Dizhoor AM. Instead of Binding Calcium, One of the EF-hand Structures in Guanylyl Cyclase Activating Protein-2 Is Required for Targeting Photoreceptor Guanylyl Cyclase. J Biol Chem 2001; 276:48143–48148.

    PubMed  CAS  Google Scholar 

  33. Li N, Sokal I, Bronson JD et al. Identification of functional regions of guanylate cyclase-activating protein 1 (GCAP1) using GCAPI/GCIP chimeras. Biol Chem 2001; 382:1179–1188.

    PubMed  CAS  Google Scholar 

  34. Yang RB, Garbers DL. Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 1997; 272:13738–42.

    Article  PubMed  CAS  Google Scholar 

  35. Yu H, Olshevskaya E, Duda T et al. Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. J Biol Chem 1999; 274:15547–15555.

    Article  PubMed  CAS  Google Scholar 

  36. Ramamurthy V, Tucker C, Wilkie SE et al. Interactions within the Coiled-coil Domain of RetGC-1 Guanylyl Cyclase Are Optimized for Regulation Rather than for High Affinity. J Biol Chem 2001; 276:26218–26229.

    Article  PubMed  CAS  Google Scholar 

  37. Olshevskaya EV, Ermilov AN, Dizhoor AM et al. Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem 1999; 274:25583–7.

    Article  PubMed  CAS  Google Scholar 

  38. Payne AM, Downes SM, Bessant DA et al. A mutation in guanylate cyclase activator IA (GUCAIA) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 1998; 7:273–277.

    Article  PubMed  CAS  Google Scholar 

  39. Dizhoor AM, Boikov SG, Olshevskaya EV. Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem 1998; 273:17311–4.

    Article  PubMed  CAS  Google Scholar 

  40. Sokal I, Li N, Surgucheva I et al, GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 1998; 2:129–133.

    Article  PubMed  CAS  Google Scholar 

  41. Wilkie SE, Newbold RJ, Deery E et al, Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet 2000; 9:3065–3073.

    Article  PubMed  CAS  Google Scholar 

  42. Kachi S, Nishizawa Y, Olshevskaya E. Detailed localization of photoreceptor guanylate cyclase activating protein-1 and -2 in mammalian retinas using light and electron microscopy. Exp Eye Res 1999; 68:465–473.

    Article  PubMed  CAS  Google Scholar 

  43. Otto-Bruc A, Fariss RN, Haeseleer F et al, Localization of guanylate cyclase-activating protein 2 in mammalian retinas. Proc Natl Acad Sci USA 1997; 94:4727–4732.

    Article  PubMed  CAS  Google Scholar 

  44. Howes K., Bronson JD, Dang YL et al. Gene array and expression of mouse retina guanylate cyclase activating proteins 1 and 2. Invest Ophthalmol Vis Sci 1998; 39:867–875.

    PubMed  CAS  Google Scholar 

  45. He L, Poblenz AT, Medrano CJ et al. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J Biol Chem 2000; 275:12175–84.

    Article  PubMed  CAS  Google Scholar 

  46. Pugh EN Jr, Lamb TD. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors. Vision Res 1990; 30:1923–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dizhoor, A. (2002). Site-Directed and Natural Mutations in Studying Functional Domains in Guanylyl Cyclase Activating Proteins (GCAPs). In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics