Centrins, A Novel Group Of Cat2,2+-Binding Proteins In Vertebrate Photoreceptor Cells

  • Uwe Wolfrum
  • Andreas Gießl
  • Alexander Pulvermüller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 514)

Abstract

Changes in the intracellular Ca2+-concentration affect the visual signal transduction cascade directly or more often indirectly through Ca2+-binding proteins. Here we review recent findings on centrins in photoreceptor cells of the mammalian retina. Centrins are members of a highly conserved subgroup of the EF-hand super-family of Ca2tbinding proteins commonly associated with centrosome-related structures. In vertebrate photoreceptor cells, centrins are also prominent components in the connecting cilium linking the light sensitive outer segment with the biosynthetically active inner segment compartment. Recent findings demonstrate that Ca2+-activated centrin forms a complex with the visual G-protein transducin in photoreceptor cells. This Ca2+-dependent assembly of G-proteins with centrin is a novel aspect of the supply of signaling proteins in sensory cells, and a potential link between molecular translocations and signal transduction in general.

Keywords

Hydrolysis Tyrosine Retina Oligomer Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinberg RH, Fisher SK, Anderson DH. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 1980; 190:501–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Usukura J, Obata S. Morphogenesis of photoreceptor outer segments in retinal development. Prog Retin Eye Res 1995; 15:113–25.CrossRefGoogle Scholar
  3. 3.
    Young RW. Visual cells and the concept of renewal. Invest Ophthalmol 1976; 15:700–25.Google Scholar
  4. 4.
    Heck M, Hofmann KP. G-protein-effector coupling: a real-time light-scattering assay for transducin-phosphodiesterase interaction. Biochemistry 1993; 32:8220–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Okada T, Ernst OP, Palczewski K et al. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 2001; 26:318–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Palczewski K, Polans AS, Baehr W et al. Ca2+-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 2000; 22:337–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Hsu YT, Molday RS. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 1993; 361:76–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Weitz D, Zoche M, Muller F et al Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the beta-subunit. EMBO J 1998; 17:2273–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Koch KW, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 1988; 334:64–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Molday RS, Kaupp UB. Ion channels of vertebrate photoreceptors. In: Stavenga DG, Degrip WJ, Pugh EN Jr, eds. Molecular mechanism in visual transduction. Amsterdam: Elsevier Science Publishers, 2000:143–82.CrossRefGoogle Scholar
  11. 11.
    Salisbury JL. Centrin, centrosomes, and mitotic spindle poles. Curr Opinion Cell Biol 1995; 7:39–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Schiebel E, Bomens M. In search of a function for centrin. Trends Cell Biol 1995; 5:197–201.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolfrum U. Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors. Biol Cell 1992; 76:373–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolfrum U. Centrin in the photoreceptor cells of mammalian retinae. Cell Motil Cytoskeleton 1995; 32:55–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Wolfrum U, Salisbury JL. Expression of centrin isoforms in the mammalian retina. Exp Cell Res 1998; 242:10–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Salisbury JL, Baron A, Surek B et al. Striated flagellar roots: isolation and characterization of a calcium-modulated contractile organelle. J Cell Biol 1984; 99:962–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Huang B, Mengerson A, Lee VD. Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol 1988; 107:133–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Baum P, Furlong C, Byers BE. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci USA 1986; 83:5512–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Baum P, Yip C, Goetsch L et al. A yeast gene essential for regulation of spindle pole duplication. Mol Cell Biol 1988; 8:5386–97.PubMedGoogle Scholar
  20. 20.
    Zhu JA, Bloom SE, Lazarides E et al. Identification of a novel Ca2+-regulated protein that is associated with the marginal band and centrosomes of chicken erythrocytes. J Cell Sci 1995; 108:685–98.PubMedGoogle Scholar
  21. 21.
    Lee VD, Huang B. Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci USA 1993; 90:11039–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Errabolu R, Sanders MA, Salisbury JL. Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci 1994; 107:9–16.PubMedGoogle Scholar
  23. 23.
    Meng TC, Aley SB, Svard SG et al. Immunolocalization and sequence of caltractin/centrin from the early branching eukaryote Giardia lamblia. Mol Biochem Parasitol 1996; 79:103–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Madeddu L, Klotz C, Lecaer JP et al. Characterization of centrin genes in Paramecium. Eur J Biochem 1996; 238:121–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Levy YY, Lai EY, Remillard SP et al. Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskeleton 1996; 33:298–323.PubMedCrossRefGoogle Scholar
  26. 26.
    Middendorp S, Paoletti A, Schiebel E et al. Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci USA 1997; 94:9141–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Wottrich R. Klonierung and computergestützte Strukturanalyse von Centrinisoformen der Ratte (Rattus norvegicus).-Cloning and computer based structural analysis of centrin isoforms in the rat (Rattus norvegicus). Diploma thesis 1998; University of Karlsruhe, Germany.Google Scholar
  28. 28.
    Kretsinger RH. Evolution and function of calcium-binding proteins. Int Rev Cytol 1976; 46:323–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Kretsinger RH. Calcium-binding proteins. Annu Rev Biochem 1976; 45:239–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Moncrief ND, Kretsinger R, Goldman M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 1990; 30:522–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakayama S, Moncrief ND, Kretsinger RH. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J Mol Evol 1992; 34(5):416–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Bhattacharya D, Steinkötter J, Melkonian M. Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants. Plant Mol Biol 1993; 23(6):1243–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Coling DE, Salisbury JL. Characterization of the calcium-binding contractile protein centrin from Tetraselmis striata (Pleurastrophyceae). J Protozoo! 1992; 39:385–91.Google Scholar
  34. 34.
    Weber C, Lee VD, Chazin WJ, et al. High level expression in Escherichia coli and characterization of the EF-hand calcium-binding protein caltractin. J Biol Chem 1994; 269:15795–802.PubMedGoogle Scholar
  35. 35.
    Pulvermüller A, Gießl A, Heck M et al. Calcium dependent assembly of centrin/G-protein complex in photoreceptor cells. Mol Cell Biol 2002; in press.Google Scholar
  36. 36.
    Wiech H, Geier BM, Paschke T et al. Characterization of green alga, yeast, and human centrins. J Biol Chem 1996; 271:22453–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Durussel I, Blouquit Y, Middendorp S et al. Cation-and peptide-binding properties of human centrin 2. FEBS Lett 2000; 472:208–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Barbato G, Ikura M, Kay LE et al. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 1992; 31(23):5269–78.PubMedCrossRefGoogle Scholar
  39. 39.
    Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 1993; 262(5140):1718–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Crivici A, Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struc 1995; 24:85–116.CrossRefGoogle Scholar
  41. 41.
    Geier BM, Wiech H, Schiebel E. Binding of centrin and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Karlp and Spc110p. J Biol Chem 1996; 271:28366–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Martindale VE, Salisbury JL. Phosphorylation of algal centrin is rapidly responsive to changes in the external milieu. J Cell Sci 1990; 96:395–402.PubMedGoogle Scholar
  43. 43.
    Lingle WL, Lutz WH, Ingle JN et al. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 1998; 95(6):2950–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Lutz W, Lingle WL, McCormick D et al. Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 2001; 276(23):20774–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Salisbury JL. Centrin and the algal flagellar apparatus.JPhycol 1989; 25:201–6.CrossRefGoogle Scholar
  46. 46.
    Salisbury JL, Sanders MA, Harpst L. Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol 1987; 105:1799–805.PubMedCrossRefGoogle Scholar
  47. 47.
    Schulze D, Robenek H, McFadden GI, et al. Immunolocalization of a Ca2+-modulated contractile protein in the flagellar apparatus of green algae: the nucleus-basal body connector. Eur J Cell Biol 1987; 45:51–61.Google Scholar
  48. 48.
    McFadden GI, Schulze D, Surek B et al. Basal body reorientation mediated by Ca2+-modulated contractile protein. J Cell Biol 1987; 105:903–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Sanders MA, Salisbury JL. Centrin-mediated microtubule serving during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 1989; 108:1751–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Sanders MA, Salisbury JL. Centrin plays an essential role in microtubuli severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 1994; 124:795–805.PubMedCrossRefGoogle Scholar
  51. 51.
    Salisbury JL. Algal centrin: Calcium sensitive contractile organelles. Algae as experimental systems. Alan R. Liss Inc., 1989:19–37.Google Scholar
  52. 52.
    Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 1994; 165:299–335.PubMedCrossRefGoogle Scholar
  53. 53.
    Khalfan W, Ivanovska I, Rose MD. Functional interaction between the PKCI pathway and CDC31 network of SPB duplication genes. Genetics 2000; 155:1543–59.PubMedGoogle Scholar
  54. 54.
    Ivanovska I, Rose MD. Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication. Genetics 2001; 157:503–18.PubMedGoogle Scholar
  55. 55.
    Sullivan DS, Biggins S, Rose MD The yeast centrin, Cdc31p, and interacting protein kinase, Kiclp, are required for cell integrity. J Cell Biol 1998; 143:751–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Salisbury JL, Baron AT, Sanders MA The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol 1988; 107:635–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Baron AT, Salisbury JL. The centrin-related pericentriolar lattice of metazoan centrosomes. Comparative Spermatology 20 Years After 1991; 75:285–9.Google Scholar
  58. 58.
    Baron AT, Greenwood TM, Bazinet CW, et al. Centrin is a component of the pericentriolar lattice. Biol Cell 1992; 76:383–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Laoukili J, Perret E, Middendorp S et al. Differential expression and cellular distribution of centrin isoforms during human ciliated cell differentiation in vitro. J Cell Sci 2000; 113(8):1355–64.PubMedGoogle Scholar
  60. 60.
    Paoletti A, Moudjou M, Paintrand M et al. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 1996; 109:3089–102.PubMedGoogle Scholar
  61. 61.
    Middendorp S., Kuntziger T., Abraham Y. et al. A role for centrin 3 in centrosome reproduction. J Cell Biol 2000; 148(3):405–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Besharse JC, Horst CJ. The photoreceptor connecting cilium-a model for the transition tone. In: Bloodgood RA, ed. Ciliary and flagellar membranes. New York: Plenum, 1990:389–417.CrossRefGoogle Scholar
  63. 63.
    Spencer M, Detwiler PB, Bunt-Milam AH. Distribution of membrane proteins in mechanical dissociated retinal rods. Invest Ophthalmol Visual Sci 1988; 29:1012–20.Google Scholar
  64. 64.
    Wolfrum U, Schmitt A. Evidence for myosin VIIa driven rhodopsin transport in the plasma membrane of the photoreceptor connecting cilium. In: Hollyfield JG, Andersson RE, LaVail M, eds. Retinal degeneration diseases and experimental therapy. New York: Plenum Press, 1999:3–14.CrossRefGoogle Scholar
  65. 65.
    Wolfrum U, Schmitt A. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 2000; 46:95–107.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu X, Udovichenko IP, Brown SD et al. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J Neurosci 1999; 19(15):6267–74.PubMedGoogle Scholar
  67. 67.
    Marszalek JR, Liu X, Roberts EA et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 2000; 102:175–87.PubMedCrossRefGoogle Scholar
  68. 68.
    Uzawa M, Grams J, Madden B et al. Identification of a complex between centrin and heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation. Dev Biol 1995; 171:51–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Paschke T. Untersuchungen zur Familie der Cat+-bindenden Centrine: biochemische Charakterisierung and Identifikation von interagierenden Proteinen. Analysis of the family of Cat+-binding centrins: biochemical characterization and identification of interacting proteins Dissertation 1997; University of Cologne, GermanyGoogle Scholar
  70. 70.
    Philp NJ, Chang W, Long K. Light-stimulated protein movement in rod photoreceptor cells of the rat retina. FEBS Lett 1987; 225:127–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Whelan JP, McGinnis JF. Light-dependent subcellular movement of photoreceptor proteins. J Neurosci Res 1988; 20:263–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Matthews HR, Fain GL. A light-dependent increase in free Ca2+ concentration in the salamander rod outer segment. J Physiol 2001; 532:305–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Bigay J, Faurobert E, Franco M et al. Roles of lipid modifications of transducin subunits in their GDP-dependent association and membrane binding. Biochemistry 1994; 33:14081–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Uwe Wolfrum
    • 1
  • Andreas Gießl
    • 1
  • Alexander Pulvermüller
    • 2
  1. 1.Johannes Gutenberg-Universität MainzInstitut für ZoologieMainzGermany
  2. 2.Humboldt-Universität zu Berlin Universitätsklinikum Charitélnstitut für Medizinische Physik und BiophysikBerlinGermany

Personalised recommendations