Dynamic Imaging of Molecular Motion with Ultrashort Intense Laser Pulses



The nonlinear nonperturbative response of atoms in intense laser fields have been extensively studied both experimentally and theoretically in the past twenty years leading to new unexpected effects such as Above Threshold Ionization, ATI, high order frequency generation, HOHG, etc. and these are documented in recent book1. The similar studies of molecules is a new chapter in the pursuit of laser control and manipulation of molecules 2. The nonlinear nonperturbative response of molecules to intense (I>1015 W/cm2) and ultrashort (t<10 fs) laser pulses is expected to yield new effects due to the extra degrees of freedom nuclear motion, as compared to atoms3. One of our major contributions to this new area of research has been the prediction of new laser induced bound states 3 via the creation of Laser Induced Molecular Potentials, LIMP’s 4, Charge Resonance Enhanced Ionization, CREI 5 and molecular High Order Harmonic Generation, MHOHG 6. These effects are all nonlinear nonperturbative in nature and were predicted by high-level numerical simulations of appropriate time-dependent Schroedinger equations, TDSE’s of molecules in laser fields.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Gavrila, Atoms in in Intense Laser Fields (Academic Press, N.Y. 1992) 2. Laser Control and Manipulation of Molecules, eds. A.D. Bandrauk, Y. Fujimura, R.J.Google Scholar
  2. 2.
    Gordon, ACS Symp. Book (Oxford Press, UK, 2002)Google Scholar
  3. 3.
    A.D. Bandrauk, Molecules in Laser Fields (M.Decker, N.Y. 1994), chap. 1+3Google Scholar
  4. 4.
    C. Wunderlich et al., Phys. Rev. Let. 78, 233 (1997)CrossRefGoogle Scholar
  5. 5. A.D. Bandrauk, Proc. ICPEAC’9, ed, Y. Itikawa, p.102–117 (AIP-CP500, 2000)Google Scholar
  6. 6.
    A.D. Bandrauk, H. Yu„ Phys.Rev. A59, 539 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A. Zavriyev, P. Bucksbaum, chap.2 in Ref. [3]; Phys.Rev.Lett. 64,1883(1990)ADSCrossRefGoogle Scholar
  9. 9.
    K. Sändig, H,Figger, T.W. Hänscn, Phys. Rev.Lett. 85, 4878 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Chelkowski, C. Foisy, A.D. Bandrauk, Phys. Rev. A 57, 1176(1998)ADSCrossRefGoogle Scholar
  11. 11.
    S.Chelkowski, P.B.Corkum, A.D.Bandrauk, Phys.Rev.Lett. 82, 3416(1999);ADSCrossRefGoogle Scholar
  12. A.D. Bandrauk, S. Chelkowski, Chem.Phys. Lett. 336, 518 (2001)ADSCrossRefGoogle Scholar
  13. 12.
    T. Zuo, P.B. Corkum, A.D. Bandrauk, Chem.Phys.Lett. 259,313(1996)ADSCrossRefGoogle Scholar
  14. 13.
    P.B. Corkum, Phys.Rev.Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  15. 14.
    A.H. Zewail et al.,Science 291, 458 (2001)ADSCrossRefGoogle Scholar
  16. 15.
    I. Kawata, H. Kono, A.D. Bandrauk, Phys.Rev. A 62, 03140 (2000)Google Scholar
  17. 16.
    M.Y. Ivanov, P. Corkum, T. Zuo, A.D. Bandrauk, Phys.Rev.Lett. 74,2933(1995)ADSCrossRefGoogle Scholar
  18. 17.
    A.D. Bandrauk, S. Chelkowski, Phys.Rev.Lett. 84, 3562 (2000);ADSCrossRefGoogle Scholar
  19. S. Chelkowski, M. Zamojski, A.D. Bandrauk, Phys.Rev. A 63, 023409 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Laboratoire de Chimie ThéoriqueUniversité de SherbrookeQué.Canada

Personalised recommendations