Electron Attachment to Molecules of Practical Applications

  • E. Krishnakumar


Qualitative and quantitative data on electron-molecule collisions are important for a wide variety of applications from planetary atmospheric modelling, astro-chemistry, pollution control, radiation damage, analytical mass spectrometry, fusion plasma devices, dry etching machines for semiconductor fabrication, high current switches and insulators1. One of the very important processes in low energy electron-molecule collisions is the formation of negative ions through dissociative attachment2. In this process an electron of a particular energy interacts with a given molecule to form a negative ion resonance. This resonance subsequently decays through autodetachment in which the electron escapes into the continuum, leaving the molecule in a vibrationally excited state in certain situations. The negative ion resonance may also decay through a dissociation process depending on its potential energy surface. However this dissociation process is dependent on the lifetime of the resonance against autodetachment and is also very sensitive to the internuclear separation. Several experiments involving vibrational excitation have shown that this process is very sensitive to initial vibrational excitation of the neutral molecule2, 3, 4, 5. In addition, as electronic excitation leads to large changes in the polarizability and structure and symmetry of a molecule, one may expect corresponding changes in the resonant attachment and dissociation process.


Dissociation Process Electron Attachment Absolute Cross Section Internuclear Separation Relative Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Christophorou (ed.), 1984, Electron - Molecule Collisions and their Applications, (Academic Press 1984) vol. 2.Google Scholar
  2. 2.
    A. Chutjian, A. Gascadden and J. M. Wadhera, 1996, Phys. Rep. 264, 393.ADSCrossRefGoogle Scholar
  3. 3.
    E. Illenberger and B. M. Smimov, 1998, Physics Uspekhi, 41, 651.ADSCrossRefGoogle Scholar
  4. 4.
    M. W. McGeoch and R. E. Schlier, 1986, Phys. Rev. A 33, 1708. 2.Google Scholar
  5. 5.
    M. Külz, A. Kortina, M. Keil, B. Schellhass, and K. Bergmann, 1993, Phys. Rev. A 48, R4015.ADSCrossRefGoogle Scholar
  6. 6.
    L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, 1984, in Electron - Molecule Collisions and their Applications, edited by L. G. Christophorou (Academic Press) vol. I.Google Scholar
  7. 7.
    D. Rapp, P. Englander-Golden, and D. D. Briglia, 1965, J. Chem. Phys. 42, 4081.ADSCrossRefGoogle Scholar
  8. 8.
    W. W. Lozier, 1934, Phys. Rev. 46, 268.ADSCrossRefGoogle Scholar
  9. 9.
    O. J. Orient and S. K. Srivastava, 1983, J. Chem. Phys. 78, 2949.ADSCrossRefGoogle Scholar
  10. 10.
    E. Krishnakumar and K. Nagesha, 1992, J. Phys. B: At. Mol. Opt. Phys. 25, 1645.ADSCrossRefGoogle Scholar
  11. 11.
    K. E. Greenberg and J. T. Verdeyan, 1985, J. Appl. Phys. 57, 1596.ADSCrossRefGoogle Scholar
  12. 12.
    G. Bruno, P. Capezzuto, G. Cicala, and P. Manodoro, 1994, J. Vac. Sci. Technol. 12, 690.ADSCrossRefGoogle Scholar
  13. 13.
    P. W. Harland and J. L. Franklin, 1974, J. Chem. Phys. 6, 1621.ADSCrossRefGoogle Scholar
  14. 14.
    P. J. Chantry, 1982, in Applied Atomic Collision Physics, H. S. W. Massey, E. W. McDaniel, and B. Bedersen eds., Academic Press, New York, vol.3, p. 35.Google Scholar
  15. 15.
    N. Ruckhaberle, I. Lehmann, S. Matejcik, E. Illenberger, Y. Bouteiller, V. Perquet, L. Museur, C. Desfrancois,and Jean-Pierre Schermann, 1997, J. Phys. Chem. A, 101, 9942.CrossRefGoogle Scholar
  16. 16.
    D. Nandi, S. A. Rangwala, S. V. K. Kumar, and E. Krishnakumar, 2001, Int. J. Mass Spectrom. Ion Process, 205, 111.CrossRefGoogle Scholar
  17. 17.
    M. Allan, K. R. Asmis, D. B. Popovic, M. Stepanovic, N. J. Mason and J. A. Davies, 1996, J. Phys. B: At. Mol. Opt. Phys. 29, 4727.ADSCrossRefGoogle Scholar
  18. 18.
    R. K. Curran, 1961, J. Chem. Phys. 35, 1849.ADSCrossRefGoogle Scholar
  19. 19.
    I. C. Walker, J. M. Gingell, N. J. Mason, and G. Martson, 1996, J. Phys. B: At. Mol. Opt. Phys. 294749.ADSCrossRefGoogle Scholar
  20. 20.
    J. D. Skalny, S. Matejcik, A. Kiendler, A. Stamatovic, and T. D. Mark, 1999, Chem. Phys. Lett. 255, 11.Google Scholar
  21. 21.
    S. A. Rangwala, S. V. K Kumar, E. Krishnakumar and N. J. Mason, 1999, J. Phys. B: At. Mol. Opt. Phys. 32, 3795.ADSCrossRefGoogle Scholar
  22. 22.
    S. A. Rangwala, S. V. K. Kumar and E. Krishnakumar, 1997, Int. Symposium on Electron-Molecule Collisions and Ion and Electron Swarms, Engleberg.Google Scholar
  23. 23.
    E. Krishnakumar, S. V. K. Kumar, S. A. Rangwala and S. K. Mitra, 1997, Phys. Rev. A 56,194.ADSCrossRefGoogle Scholar
  24. 24.
    S. A. Rangwala, S. V. K. Kumar and E. Krishnakumar, 2001, Phys. Rev. A, 64, 012707.ADSCrossRefGoogle Scholar
  25. 25.
    K. Nagesh, Bhas Bapat, V. R. Marathe and E. Krishnakumar, 1997, Z. Phys. D, 41, 261.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • E. Krishnakumar
    • 1
  1. 1.Tata Institute of Fundamental ResearchColaba, MumbaiIndia

Personalised recommendations