Generation of Photon Number States on Demand



The many applications discussed in quantum communication and quantum cryptography require sources able to produce a preset number of photons. Single photons are, for example, a necessary requirement for secure quantum communication,1, 2, 3 for quantum cryptography4 and in special cases also for quantum computing.5 However, photon fields with fixed photon numbers are also interesting from the point of view of fundamental physics since they represent the ultimate non-classical limit of radiation. When the photon number state is generated by strong coupling of excited-state atoms, a corresponding number of ground-state atoms is simultaneously populated. Such a system therefore produces a fixed number of atoms in the lower state as well. This type of atom source is a long sought after gedanken device.6 Single photons have been generated by several processes such as single-atom fluorescence,7 single-molecule fluorescence,8 two-photon down-conversion,9 Coulomb blockade of electrons,10 and one- and two-photon Fock states have been created in the micromaser.11,12 As these sources do not produce the photons on demand, they are better described as “heralded” photon sources, because they are stochastic either in the emission direction or in the time of creation. A source of single photons or even more generally Fock states created on demand has not yet been demonstrated. Cavity quantum electrodynamics (QED) provides us with both the possibility of generating a photon at a particular time and localising its emission direction.


Single Photon Photon Number Quantum Cryptography Optical Cavity Rydberg Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zbinden, H., Gisin, N., Huttner, B., and Tittel, W., 2000, Practical Aspects of Quantum Cryptographic Key Distribution. J. Cryptol. 13: 207–220;CrossRefzbMATHGoogle Scholar
  2. Lo, H.-K. and Chau, H. F., 1999, Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 283: 2050–2056.ADSCrossRefGoogle Scholar
  3. 2.
    Gheri, K. M., Saavedra, C., Törmä, P., Cirac, J. I., and Zoller, P., 1998, Entanglement Engineering of One-Photon Wave Packets Using a Single-Atom Source. Phys. Rev. A 58: R2627–R2630ADSCrossRefGoogle Scholar
  4. van Enk, S. J., Cirac, J. I., and Zoller, P., 1997, Ideal Quantum Communication over Noisy Channels: a Quantum Optical Implementation. Phys. Rev. Lett. 78: 4293–4296;ADSCrossRefGoogle Scholar
  5. van Enk, S. J., Cirac, J. I., and Zoller, P., 1998, Photonic Channels for Quantum Communication. Science 279: 205–208.ADSCrossRefGoogle Scholar
  6. 3.
    Cirac, J. I., Zoller, P., Kimble, H. J., and Mabuchi, H., 1997, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett. 78: 3221–3224ADSCrossRefGoogle Scholar
  7. Parkins, A. S., Marte, P., Zoller, P., and Kimble, H. J., 1993, Synthesis of Arbitrary Quantum States via Adiabatic Transfer of Zeeman Coherence. Phys. Rev. Lett. 71: 3095–3096ADSCrossRefGoogle Scholar
  8. Parkins, S. and Kimble, H. J., 1999, Quantum State Transfer between Motion and Light.J. Opt. B. 1: 496.ADSCrossRefGoogle Scholar
  9. 4.
    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., and Zeilinger, A., 2000, Quantum Cryptography with Entangled Photons. Phys. Rev. Lett. 84: 4729–4732;ADSCrossRefGoogle Scholar
  10. Naik, D. S., Peterson, C. G., White, A. G., Berglund, A. J., and Kwiat, P. G., 2000, Entangled State Quantum Cryptography: Eavesdropping on the Ekert Protocol. Phys. Rev. Lett. 84: 4733–4736;ADSCrossRefGoogle Scholar
  11. Tittel, W., Brendel, J., Zbinden, H., and Gisin, N., 2000, Quantum Cryptography Using Entangled Photons in Energy-Time Bell States. Phys. Rev. Lett. 84: 4737–4740.ADSCrossRefGoogle Scholar
  12. 5.
    Gottesman, D. and Chuang, I. L., 1999, Demonstrating the Viability of Universal Quantum Computation Using Teleportation and Single-Qubit Operations. Nature 402: 390–393;ADSCrossRefGoogle Scholar
  13. Preskill, J., 1999, Plug-in Quantum Software. Nature 402: 357–358;ADSCrossRefGoogle Scholar
  14. Johnathon, D. and Plenio, M. B., 1999, Entanglement-Assisted Local Manipulation of Pure Quantum States. Phys. Rev. Lett. 83: 3566–3569.MathSciNetADSCrossRefGoogle Scholar
  15. 6.
    Vitali, D., Tombesi, P., and Milburn, G., 1998, Quantum-State Protection in Cavities. Phys. Rev. A 57:4930–4944.ADSCrossRefGoogle Scholar
  16. 7.
    Höffges, J. T., Baldauf, H. W., Lange, W., and Walther, H., 1997, Heterodyne Measurement of the Resonance Fluorescence of a Single Ion. J. Mod. Opt. 44: 1999–2010.ADSCrossRefGoogle Scholar
  17. 8.
    Brunei, C., Lounis, B., Tamarat, P., and Orrit, M., 1999, Triggered Source of Single Photons Based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett. 83: 2722–2725.ADSCrossRefGoogle Scholar
  18. 9.
    Hong, C. K. and Mandel, L., 1986, Experimental Realization of a Localized One-Photon State. Phys. Rev. Lett. 56: 58–60.ADSCrossRefGoogle Scholar
  19. 10.
    Kim, J., Benson, O., Kan, H., and Yamamoto, Y., 1999, Single-Photon Turnstile Device. Nature 397: 500–503.ADSCrossRefGoogle Scholar
  20. 11.
    Varcoe, B. T. H., Brattke, S., Weidinger, M., and Walther, H., 2000, Preparing Pure Photon Number States of the Radiation Field. Nature 403: 743–746.ADSCrossRefGoogle Scholar
  21. 12.
    Weidinger, M., Varcoe, B. T. H., Heerlein, R., and Walther, H., 1999, Trapping States in the Micromaser. Phys. Rev. Lett. 82: 3795–3798.ADSCrossRefGoogle Scholar
  22. 13.
    Meyer, M., Briegel, H.-J., and Walther, H., 1997, Ion-Trap Laser. Europhys. Lett. 37: 317–322.ADSCrossRefGoogle Scholar
  23. 14.
    Law, C. K. and Eberly, J. H., 1996, Arbitrary Control of a Quantum Electromagnetic Field. Phys. Rev. Lett. 76: 1055–1058;ADSCrossRefGoogle Scholar
  24. Law, C. K. and Kimble, H. J., 1997, Deterministic Generation of a Bit-Steam of Single-Photon Pulses. J. Mod. Opt. 44: 2067–2074;ADSGoogle Scholar
  25. Domokos, P., Brune, M., Raimond, J. M. and Haroche, S., 1998, Photon-Number-State Generation with a Single Two-Level Atom in a Cavity: A Proposal. Eur. Phys. J. D 1: 1–4.ADSGoogle Scholar
  26. 15.
    Kuhn, A., Hennrich, M., Bondo, T., and Rempe, G., 1999, Controlled Generation of Single Photons from a Strongly Coupled Atom-Cavity System. Appl Phys. B, 69: 373–377;ADSCrossRefGoogle Scholar
  27. Pinkse, P. W. H., Fischer, T., Maunz, P., and Rempe, G., 2000, Trapping an Atom with Single Photons. Nature 404: 365–368;ADSCrossRefGoogle Scholar
  28. Ye, J., Vernooy, D. W., and Kimble, H. J., 2000, Trapping of Single Atoms in Cavity QED. Phys. Rev. Lett. 83: 4987–4990;ADSCrossRefGoogle Scholar
  29. Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S., and Kimble, H. J., 2000, The Atom-Cavity Microscope: Single Atoms Bound in Orbit by Single Photons. Science 287: 1447–1453.ADSCrossRefGoogle Scholar
  30. 16.
    See, for example, Scully, M. O. and Zubairy, M. S., 1997, Quantum Optics, Cambridge University Press.CrossRefGoogle Scholar
  31. 17.
    Rempe, G., Schmidt-Kaler, F., and Walther, H., 1990, Observation of Sub-Poissonian Photon Statistics in a Micromaser. Phys. Rev. Lett. 64: 2783–2786.ADSCrossRefGoogle Scholar
  32. 18.
    Rempe, G., Walther, H., and Klein, N., 1987, Observation of Quantum Collapse and Revival in a One-Atom Maser. Phys. Rev. Lett. 58: 353–356.ADSCrossRefGoogle Scholar
  33. 19.
    Englert, B., Löffler, M., Benson, O., Weidinger, M., Varcoe, B., and Walther, H., 1998, Entangled Atoms in Micromaser Physics. Fortschr. Phys. 46: 897–926.CrossRefGoogle Scholar
  34. 20.
    Krause, J., Scully, M.O., and Walther, H., 1987, State Reduction and n) State Preparation in a High-Q Micromaser. Phys. Rev. A 36: 4547–4550.ADSCrossRefGoogle Scholar
  35. 21.
    Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M. and Haroche, S., 1999, Seeing a Single Photon without Destroying it. Nature 400: 239–242.ADSCrossRefGoogle Scholar
  36. 22.
    A detailed account of the simulations used in this paper and a comparison with ideal micromaser theory can be found in Brattke, S., Englert, B.-G., Varcoe, B. T. H., and Walther, H., 2000, Fock States in a Cyclically Pumped One-Atom Maser. J. Mod. Opt. 47:2857–2867.MathSciNetADSzbMATHGoogle Scholar
  37. 23.
    Brattke et al., 2001, Preparing Fock States in the Micromaser. Optics Express 8: 131–144.ADSCrossRefGoogle Scholar
  38. 24.
    Brattke, S., Varcoe, B. T. H., and Walther, H., 2001, Generating Photon Number States on Demand Via Cavity. Phys. Rev. Lett. 86: 3534–3537.ADSCrossRefGoogle Scholar
  39. 25.
    Hennrich, M., Legero, T., Kuhn, A., and Rempe, G., 2000, Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity. Phys. Rev. Lett. 85: 4872–4875.ADSCrossRefGoogle Scholar
  40. 26.
    Diedrich, F. and Walther, H., 1987, Nonclassical Radiation of a Single Stored Ion. Phys. Rev. Lett. 58: 203–206.ADSCrossRefGoogle Scholar
  41. 27.
    Höffges, J.T., Baldauf, H. W., Eichler, T., Helmfrid, S.R., and Walther, H., 1997, Heterodyne Measurement of the Fluorescent Radiation of a Single Trapped Ion. Opt. Comm. 133: 170–174.ADSCrossRefGoogle Scholar
  42. 28.
    Pellizzari, T., Gardiner, S. A., Cirac, J. I., and Zoller, P., 1995, Decoherence, Continuous Observation, and Quantum Computing, a Cavity QED Model. Phys. Rev. Lett. 75: 3788–3791.ADSCrossRefGoogle Scholar
  43. 29.
    Zheng S. B. and Guo, G. C., 2000, Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. Rev. Lett. 85: 2392–2395.ADSCrossRefGoogle Scholar
  44. 30.
    Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W., and Walther, H., 2001, A Single Ion as a Nanoscopic Probe of an Optical Field. Nature 414: 49–51.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Sektion Physik der Universität München and Max-Planck-Institut für QuantenoptikGarchingFed. Rep. of Germany

Personalised recommendations