Advertisement

Van der Waals Interaction Probed by Solvatochromic Shifts

Chapter

Abstract

The study of molecular systems in the liquid phase is important for understanding a large number of chemical, physical and biological processes. The solvent interaction leads to changes in the molecular solute affecting its spectroscopic, structural and reactive properties. For this reason, the study of solvent effects has been a topic of increased interest1,2. UV-Vis absorption spectrum is very sensitive to solvent effects and it can thus be used judiciously in modeling intermolecular interaction. In this context van der Waals interactions can also be probed in the study of solvatochromic shifts. In particular for the case of nonpolar molecules in nonpolar medium the only remaining term of the dipolar van der Waals interaction is the so-called London dispersion term3. Dispersion is the mutual induced polarisation between the two sub-systems. Liptay4 has shown that dispersion interaction between the chromophore and the solvent contributes to a negative, or red, shift.

Keywords

Solvent Molecule Radial Distribution Function Solvation Shell Dispersion Interaction Single Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. J. Cramer and D. G. Truhlar, Chem. Rev. 99, 2161 (1999).CrossRefGoogle Scholar
  2. 2.
    J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).CrossRefGoogle Scholar
  3. 3.
    A. J. Stone, The Theory of Intermolecular Forces, Clarendon Press, Oxford (1996).Google Scholar
  4. 4.
    W. Liptay, in Modern Quantum Chemistry, ed. O. Sinanoglu, Part II, p. 173, Academic Press, New York (1966).Google Scholar
  5. 5.
    N. Rösch and M. C. Zerner, J. Phys. Chem. 98, 5817 (1994).CrossRefGoogle Scholar
  6. 6.
    S. Canuto and K. Coutinho, Int. J. Quantum Chem., 77, 192 (2000).CrossRefGoogle Scholar
  7. 7.
    K. Coutinho, S. Canuto and M. C. Zerner, Int. J. Quantum Chem. 65, 885 (1997).CrossRefGoogle Scholar
  8. 8.
    K. J. de Almeida, K. Coutinho, W. B. De Almeida, W. R. Rocha and S. Canuto, Phys. Chem. Chem. Phys. 3, 1583 (2001).CrossRefGoogle Scholar
  9. 9.
    S. Canuto, K. Coutinho and M. C. Zerner, J. Chem. Phys. 112, 7293 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    K. Coutinho, S. Canuto and M. C. Zerner, J. Chem. Phys. 112, 9874 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    S. Canuto, K. Coutinho and D. Trzesniak, Adv. Quantum Chem., in press (2002).Google Scholar
  12. 12.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, (1987).zbMATHGoogle Scholar
  13. 13.
    K. Coutinho and S. Canuto, DICE (version 2.8): A general Monte Carlo program for liquid simulation, University of São Paulo, (2000).Google Scholar
  14. 14.
    K. Coutinho and S. Canuto, Adv. Quantum Chem. 28, 90 (1997).ADSGoogle Scholar
  15. 15.
    K. Coutinho, M. J. de Oliveira and S. Canuto, Int. J. Quantum Chem. 66, 249 (1998).CrossRefGoogle Scholar
  16. 16.
    W. R. Rocha, K. Coutinho, W. B. De Almeida and S. Canuto, Chem.Phys. Lett. 335, 127 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    M. C. Zerner, ZINDO: A Semiempirical Program Package, University of Florida, Gainesville, FL 32611.Google Scholar
  18. 18.
    T. Abe, J.-L. Abboud, F. Belio, E. Bosch, J. I. Garcia, J. A. Mayoral, R. Notario, J. Ortega and M. Roses, J. Phys. Org. Chem 11, 193 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Universidade de Mogi das CruzesMogi das CruzesBrazil

Personalised recommendations