Quantum Molecular Dynamics on the Conically Intersecting Potential Energy Surfaces: Nonadiabatic Effects and Ultrafast Relaxation


The impact of nonadiabatic coupling on molecular dynamics is illustrated by discussing our recent theoretical works on the photo-induced and reactive scattering dynamics occurring on the conically intersecting manifold of electronic states of fundamental molecular systems in conjunction with the experimental findings.


Conical Intersection Chlorine Dioxide Quantum Molecular Dynamics Reactive Scattering Nonadiabatic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teller, E., 1937, J. Phys. Chem. 41,109–CrossRefGoogle Scholar
  2. 1.a
    Herzberg, G., and Longuet-Higgins, H. C., 1963, Discuss. Faraday Soc. 35, 77–82;CrossRefGoogle Scholar
  3. 1.b
    Carrington, T., 1972, Discuss. Faraday Soc. 53, 27–CrossRefGoogle Scholar
  4. 1.c
    Yarkony, D. R., 1998, Acc. Chem. Res.31 511–518.CrossRefGoogle Scholar
  5. 2.
    Köppel, H., Domcke, W., and Cederbaum, L. S., 1984, Adv. Chem. Phys. 57, 59–246.CrossRefGoogle Scholar
  6. 3.
    Haas1 Y., Klessinger, M., and Zilberg, S., eds, 2000, Chemical Physics, 259, 121–350.ADSCrossRefGoogle Scholar
  7. 4.
    Lichten, W., 1967, Phys. Rev. 164, 131–;ADSCrossRefGoogle Scholar
  8. 4.a
    O’Malley, T. F., 1971, Adv. At. Mol. Phys. 7, 223–ADSCrossRefGoogle Scholar
  9. 4.b
    Pacher, T., Cederbaum, L. S., and Köppel, H., 1993, Adv. Chem. Phys.84 293–391CrossRefGoogle Scholar
  10. 5.
    Motte-Tollet, F., et al, 1998, Chem. Phys. Lett. 284, 452–458.ADSCrossRefGoogle Scholar
  11. 6.
    Mahapatra, S., 2002, J. Chem. Phys. 117, 8817–8826.ADSCrossRefGoogle Scholar
  12. 7.
    Flesch, R., et al., 1993, J. Phys. Chem. 97, 837–844.CrossRefGoogle Scholar
  13. 8.
    Mahapatra, S., and Krishnan, G. M., 2001, J. Chem. Phys. 115, 6951–6960.ADSCrossRefGoogle Scholar
  14. 9.
    Peterson, K. A., and Werner, H.-J., 1993, J. Chem. Phys. 99, 302–307.ADSCrossRefGoogle Scholar
  15. 10.
    Bruckmeier, R., et al, 1994, Phys. Rev. Lett. 72, 2250–2253.CrossRefGoogle Scholar
  16. 11.
    Varandas, A. J. C., et al., 1987, J. Chem. Phys. 86, 6258–6269.ADSCrossRefGoogle Scholar
  17. 12.
    Mahapatra, S., and Köppel, H., 1998, Phys. Rev. Lett. 81, 3116–3119.ADSCrossRefGoogle Scholar
  18. 13.
    Kuppermann, A., and Wu, Y. S. M., 1995, Chem. Phys. Lett. 241, 229–240ADSCrossRefGoogle Scholar
  19. 13.a
    Wrede, E., et al, 1997, J. Chem. Phys. 106, 7862–7864;ADSCrossRefGoogle Scholar
  20. 13.b
    Kendrick, B. K., 2000, J. Chem. Phys.112 5679– 5704ADSCrossRefGoogle Scholar
  21. 14.
    Mahapatra, S., Köppel, H., and Cederbaum, L. S., 2001, J. Phys. Chem. A 105, 2321– 2329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations