Advertisement

Reactive Scattering Resonances in (He,H2+) Collisions

Chapter
  • 190 Downloads

Abstract

Resonances in atomic and molecular collisions have been receiving a lot of attention in the last few decades.1 Reactive scattering resonances in collinear (He,H 2 + ) collisions were pointed out first by Kouri and Baer2 and they have been the subject of a large number of theoretical and experimental investigations since.3 The reason for such an interest is the ubiquitous nature of ion-molecule reactions in ionosphere and in interstellar media and the (He,H 2 + ) system serves as a prototype. A reasonably accurate (±1 kcal/mol) ab initio potential-energy surface (PES) for the system was published by McLaughlin and Thompson4 and an analytic representation of comparable accuracy to it was reported by Joseph and Sathyamurthy.5 The resulting McLaughlin-Thompson-Joseph-Sathyamurthy (MTJS) PES has been used in a large number of quasiclassical trajectory and quantum mechanical investigations.3 An improved analytic fit to the same set of ab initio potential energy values was published by Aguado and Paniagua6 a few years ago. More recently, Palmieri et al7 have published, perhaps, the most accurate ab initio PES for the system. In this paper, we review the progress made in characterising and understanding the nature of reactive scattering resonances in collinear as well as three dimensional (He,H 2 + ) collisions and report some of the recent results from our laboratory.

Keywords

Periodic Orbit Interstellar Medium Molecular Collision Quasibound State Time Dependent Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Truhlar, D. J., ed. 1984, Resonances. American Chemical Society, Washington, D. C.Google Scholar
  2. 2.
    Kouri, D. J., and Baer, M., 1974, Chem. Phys. Lett. 24: 37-40.ADSCrossRefGoogle Scholar
  3. 3.
    Maiti, B., and Sathyamurthy, N., 2000, PINSA, 66, A: 59-70.CrossRefGoogle Scholar
  4. 4.
    McLaughlin, D. R., and Thompson, D. L., 1979, J. Chem. Phys., 70: 2748-2769.ADSCrossRefGoogle Scholar
  5. 5.
    Joseph, T., and Sathyamurthy, N., 1987, J. Chem. Phys., 86: 704-714.ADSCrossRefGoogle Scholar
  6. 6.
    Aguado, A., and Paniagua, ML, 1992, J. Chem. Phys., 96: 1265-1275.ADSCrossRefGoogle Scholar
  7. 7.
    Palmieri, P., Puzzarini, C., Aquilanti, V., Capecchi, G., Cavalli, S., De Fazio, D., Aguilar, A., Giménez, X., and Lucas, J. M., 2000, Mol. Phys., 98: 1835-1849.ADSCrossRefGoogle Scholar
  8. 8.
    Kuntz, P., 1972, Chem. Phys. Lett., 16: 581-583.ADSCrossRefGoogle Scholar
  9. 9.
    Adams, J.T., 1975, Chem. Phys. Lett., 33: 275-278.ADSCrossRefGoogle Scholar
  10. 10.
    Joseph, T., and Sathyamurthy, N., 1985, J. Indian Chem. Soc., 62: 874-877.Google Scholar
  11. 11.
    Sathyamurthy, N., Baer, M., and Joseph, T., 1987, Chem. Phys., 114: 73-83.CrossRefADSGoogle Scholar
  12. 12.
    Sakimoto, K., and Onda, K., 1994, Chem. Phys. Lett., 226: 227-234.10.ADSCrossRefGoogle Scholar
  13. 13.
    Balakrishnan, N., and Sathyamurthy, N., 1995, Chem. Phys. Lett, 240, 119-124.ADSCrossRefGoogle Scholar
  14. 14.
    Mahapatra, S., and Sathyamurthy, N., 1995, J. Chem. Phys., 102: 6057-6066.ADSCrossRefGoogle Scholar
  15. 15.
    Mahapatra, S., Ramaswamy, R., and Sathyamurthy, N., 1996, J. Chem. Phys., 104: 3989-3997ADSCrossRefGoogle Scholar
  16. 16.
    Bhatia, P., Maiti, B., Sathyamurthy, N., Stamatiadis, S., and Farantos, S. C., 1999, Phys. Chem. Chem. Phys., 1: 1105-1113.CrossRefGoogle Scholar
  17. 17.
    Mahapatra, S., and Sathyamurthy, N., 1996, J. Chem. Phys., 105: 10934-10943.ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, J. Z. H., Yeager, D. L., and Miller, W. H., 1990, Chem. Phys. Lett., 173:, 489-495.ADSCrossRefGoogle Scholar
  19. 19.
    Kress, J. D., Walker, R. B., and Hayes, E. F., 1990, J. Chem. Phys., 93: 8085-8097.ADSCrossRefGoogle Scholar
  20. 20.
    Lepetit, B., and Launay, J. M., 1991, J. Chem. Phys. 95: 5159-5168.ADSCrossRefGoogle Scholar
  21. 21.
    Balakrishnan, N., and Sathyamurthy, N., 1994, Proc. Indian Acad. Sci., 106: 531-538.Google Scholar
  22. 22.
    Mahapatra, S., and Sathyamurthy, N., 1997, J. Chem. Phys., 107: 6621-6626.ADSCrossRefGoogle Scholar
  23. 23.
    Kalyanaraman, C., Clary, D. C., and Sathyamurthy, N., 1999, J. Chem. Phys. lll:10910-10918.CrossRefGoogle Scholar
  24. 24.
    Aquilanti, V., Capecchi, G., Cavalli, S., De Fazio, D., Palmieri, P., Puzzarini, C., Aguilar, A., Giménez, X., and Lucas, J. M., 2000, Chem. Phys. Lett., 318: 619-628.ADSCrossRefGoogle Scholar
  25. 25.
    Maiti, B., 2001, Ph. D. Thesis A Time Dependent Quantum Mechanical Investigation and Periodic Orbit Analysis for (He,H2+) system and its Isotopic Variants. Indian Institute of Technology Kanpur.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology KanpurIndia

Personalised recommendations