Advertisement

Recent Applications of the Quantum Trajectory Method

Chapter
  • 191 Downloads

Abstract

The hydrodynamic formulation of quantum mechanics leads to an attractive approach for solving the Schrodinger time-dependent wave equation. An initial wavepacket is discretized into an ensemble of fluid elements and equations of motion are integrated to find the probability density and action function (wavefunction phase) along the trajectories followed by the fluid elements. Fluid elements propagating along the quantum trajectories are correlated with each other through the nonlocal Bohm quantum potential. These equations of motion are integrated in the Lagrangian picture of fluid motion. The equations of motion are reviewed and then the following four applications are described: barrier tunneling and above barrier reflection; electronic nonadiabiatic processes, multi-mode system-bath dynamics, and the suppression of quantum interference (the process known as decoherence).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Madelung, Z. Phys. 40, 322 (1926).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    L. de Broglie, An Introduction to the Study of Wave Mechanics (Dutton, New York, 1930).zbMATHGoogle Scholar
  3. 3.
    D. Bohm, Phys. Rev. 85, 167 (1952)ADSGoogle Scholar
  4. 3.a
    D. Bohm, Phys. Rev. 85, 180 (1952).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    D. Bohm and B. J. Hiley, The Undivided Universe (Routeledge, London, 1993).Google Scholar
  6. 5.
    P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, New York, 1993).CrossRefGoogle Scholar
  7. 6.
    B. M. Deb S. K. Ghosh, J. Chem. Phys. 77, 342 (1982)ADSCrossRefGoogle Scholar
  8. 6.a
    A. S. Bamzai and B. M. Deb, Rev. Mod. Phys. 53, 95 (1981)ADSCrossRefGoogle Scholar
  9. 6.b
    S. K. Ghosh and B. M. Deb, Int. J. Quantum Chem. 22, 871 (1982)CrossRefGoogle Scholar
  10. 6.c
    S. K. Ghosh and M. Berkowitz, J. Chem. Phys. 83, 2976 (1985)ADSCrossRefGoogle Scholar
  11. 6.d
    B. K. Dey and B. M. Deb, J. Chem. Phys. 110, 6229 (1999)ADSCrossRefGoogle Scholar
  12. 6.e
    B. M. Deb and P. K. Chattaraj, Phys. Rev. A 39, 1696 (1989)ADSCrossRefGoogle Scholar
  13. 7.
    C. L. Lopreore and R. E. Wyatt, Phys. Rev. Lett, 82, 5190 (1999).ADSCrossRefGoogle Scholar
  14. 8.
    R. E. Wyatt, Chem. Phys. Lett. 313, 189 (1999).ADSCrossRefGoogle Scholar
  15. 9.
    R. E. Wyatt, J. Chem. Phys. 111, 4406 (1999).ADSCrossRefGoogle Scholar
  16. 10.
    R. E. Wyatt, D. J. Kouri, and D. K. Hoffman, J. Chem. Phys. 112, 10730 (2000).ADSCrossRefGoogle Scholar
  17. 11.
    C. L. Lopreore and R. E. Wyatt, Chem. Phys. Lett. 325, 73 (2000).ADSCrossRefGoogle Scholar
  18. 12.
    E. R. Bittner and R. E. Wyatt, J. Chem. Phys. 113, 8888 (2000).ADSCrossRefGoogle Scholar
  19. 13.
    R. E. Wyatt and E. R. Bittner, J. Chem. Phys. 113, 8898 (2000).ADSCrossRefGoogle Scholar
  20. 14.
    K. Na and R. E. Wyatt, Int. J. Quantum Chem. 81, 206 (2001).CrossRefGoogle Scholar
  21. 15.
    R. E. Wyatt, C. L. Lopreore, and G. Parlant, J. Chem. Phys. 114, 5113 (2001).ADSCrossRefGoogle Scholar
  22. 16.
    C. L. Lopreore and R. E. Wyatt, J. Chem. Phys. 116, 1228 (2002).ADSCrossRefGoogle Scholar
  23. 17.
    R. E. Wyatt, and K. Na, Phys. Rev. E 65, 016702 (2002).ADSCrossRefGoogle Scholar
  24. K. Na and R. E. Wyatt, Phys. Rev. A, to be published.Google Scholar
  25. 19.
    D. K. Dey, A. Askar, and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998).ADSCrossRefGoogle Scholar
  26. 20.
    D. K. Dey, A. Askar, and H. A. Rabitz, Chem. Phys. Lett. 297, 247 (1998).ADSCrossRefGoogle Scholar
  27. 21.
    F. Sales Mayor, A. Askar, and H. A. Rabitz, J. Chem. Phys. 111, 2423 (1999).ADSCrossRefGoogle Scholar
  28. 22.
    B. K. Dey, H. A. Rabitz, and A. Askar, Phys. Rev. A 61, 3412 (2000).ADSCrossRefGoogle Scholar
  29. 23.
    X. G. Hu, T. S. Ho, and H. A. Rabitz, Phys. Rev. E 61, 5967 (2000).MathSciNetADSCrossRefGoogle Scholar
  30. 24.
    J. H. Weiner and Y. Partom, Phys. Rev. 187, 1134 (1969).MathSciNetADSCrossRefGoogle Scholar
  31. 25.
    J. H. Weiner and Y. Partem, Phys. Rev. B 1, 1533 (1970).ADSCrossRefGoogle Scholar
  32. 26.
    J. H. Weiner and A. Askar, J. Chem. Phys. 54, 1108 (1971)MathSciNetADSCrossRefGoogle Scholar
  33. 26.a
    J. H. Weiner and A. Askar, J. Chem. Phys. 54, 3534 (1971).MathSciNetADSCrossRefGoogle Scholar
  34. 27.
    A. Askar and J. H. Weiner, Am. J. Phys. 39, 1230 (1971).ADSCrossRefGoogle Scholar
  35. 28.
    H. Y. Kim and J. H. Weiner, Phys. Rev. B 7, 1353 (1973).ADSCrossRefGoogle Scholar
  36. 29.
    J. Maddox and E. R. Bittner, J. Chem. Phys. 115, 6309 (2001).ADSCrossRefGoogle Scholar
  37. J. Maddox and E. R. Bittner, Phys. Rev. E, in press.Google Scholar
  38. 31.
    I. Burghardt and L. S. Cederbaum, J. Chem. Phys. 115, 10303, 10312 (2001). 10.ADSCrossRefGoogle Scholar
  39. 32.
    E. R. Bittner, J. Chem. Phys. 112, 9703 (2000).ADSCrossRefGoogle Scholar
  40. 33.
    D. Nerukh and J. H. Frederick, Chem. Phys. Lett. 332, 145 (2000).ADSCrossRefGoogle Scholar
  41. 34.
    E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 113, 9369 (2000).ADSCrossRefGoogle Scholar
  42. 35.
    E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 116, 8 (2002).ADSCrossRefGoogle Scholar
  43. 36.
    O. V. Prezhdo and C. Brooksby, Phys. Rev. Lett. 86, 3215 (2001).ADSCrossRefGoogle Scholar
  44. 37.
    J. C. Burant and J. C. Tully, J. Chem. Phys. 112, 6097 (2000).ADSCrossRefGoogle Scholar
  45. 38.
    O. F. de Alcantara Bonfim, J. Florencio, and F. C. Sa Barreto, Phys. Rev. E 58, 6851 (1998).ADSCrossRefGoogle Scholar
  46. 39.
    S. Sengupta and P. K. Chattaraj, Phys. Lett. A 215, 119 (1996).ADSCrossRefGoogle Scholar
  47. 40.
    H. Frisk, Phys. Lett. A 227, 139 (1997).MathSciNetADSCrossRefzbMATHGoogle Scholar
  48. 41.
    R. H. Parmenter and R. W. Valentine, Phys. Lett. A 201, 1 (1995).MathSciNetADSCrossRefzbMATHGoogle Scholar
  49. 43.
    H. Carlsen, E. Sjoqvist, and O. Goscinski, Int. J. Quantum Chem. 75, 409 (1999).CrossRefGoogle Scholar
  50. 44.
    H. Carlsen and O. Goscinski, Phys. Rev. A 59, 1063 (1999).ADSCrossRefGoogle Scholar
  51. 45.
    P. Lancaster and K. Salkauskas, Curve and Surface Fitting (Academic, New York, 1986).zbMATHGoogle Scholar
  52. 46.
    P. Lancaster and K. Salkauskas, Math. Comp. 37, 141 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  53. 47.
    T. Belytschko, Y. Y. Lu, and L. Gu, Int. J. Numer. Methods Eng. 37, 229 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 48.
    B. Nayroles, G. Touzot, and P. Villon, Computational Mechanics 10, 307 (1992).ADSCrossRefzbMATHGoogle Scholar
  55. E. Joos in D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and H. D. Zeh(eds.), Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, New York, 1998);Google Scholar
  56. H. D. Zeh in P. Blanchard, D. Giulini, E. Joos, C. Kiefer, and I. O. Stanatescu (eds.), Decoherence: Theoretical, Experimental, and Conceptual Problems (Springer, New York, 2000)Google Scholar
  57. M. B. Mensky, Quantum Measurements and Decoherence (Klawer, Dordrecht, 2000).Google Scholar
  58. 50.
    W. H. Zurek, Physics Today, p. 36, October 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Institute for Theoretical Chemistry, Department of Chemistry and BiochemistryUniversity of TexasAustinUSA

Personalised recommendations