Skip to main content
  • 243 Accesses

Abstract

The many applications discussed in quantum communication and quantum cryptography require sources able to produce a preset number of photons. Single photons are, for example, a necessary requirement for secure quantum communication,13 for quantum cryptography4 and in special cases also for quantum computing.5 However, photon fields with fixed photon numbers are also interesting from the point of view of fundamental physics since they represent the ultimate non-classical limit of radiation. When the photon number state is generated by strong coupling of excited-state atoms, a corresponding number of ground-state atoms is simultaneously populated. Such a system therefore produces a fixed number of atoms in the lower state as well. This type of atom source is a long sought after gedanken device.6 Single photons have been generated by several processes such as single-atom fluorescence,7 single-molecule fluorescence,8 two-photon down-conversion,9 Coulomb blockade of electrons,10 and one- and two-photon Fock states have been created in the micromaser.11,12 As these sources do not produce the photons on demand, they are better described as “heralded” photon sources, because they are stochastic either in the emission direction or in the time of creation. A source of single photons or even more generally Fock states created on demand has not yet been demonstrated. Cavity quantum electrodynamics (QED) provides us with both the possibility of generating a photon at a particular time and localising its emission direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zbinden, H., Gisin, N., Huttner, B., and Tittel, W., 2000, Practical Aspects of Quantum Cryptographic Key Distribution. J. Cryptol. 13: 207–220;

    Article  MATH  Google Scholar 

  2. Lo, H.-K. and Chau, H. F., 1999, Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 283: 2050–2056.

    Article  ADS  Google Scholar 

  3. Gheri, K. M., Saavedra, C., Törmä, P., Cirac, J. I., and Zoller, P., 1998, Entanglement Engineering of One-Photon Wave Packets Using a Single-Atom Source. Phys. Rev. A 58: R2627–R2630

    Article  ADS  Google Scholar 

  4. van Enk, S. J., Cirac, J. I., and Zoller, P., 1997, Ideal Quantum Communication over Noisy Channels: a Quantum Optical Implementation. Phys. Rev. Lett. 78: 4293–4296;

    Article  ADS  Google Scholar 

  5. van Enk, S. J., Cirac, J. I., and Zoller, P., 1998, Photonic Channels for Quantum Communication. Science 279: 205–208.

    Article  ADS  Google Scholar 

  6. Cirac, J. I., Zoller, P., Kimble, H. J., and Mabuchi, H., 1997, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett. 78: 3221–3224

    Article  ADS  Google Scholar 

  7. Parkins, A. S., Marte, P., Zoller, P., and Kimble, H. J., 1993, Synthesis of Arbitrary Quantum States via Adiabatic Transfer of Zeeman Coherence. Phys. Rev. Lett. 71: 3095–3096

    Article  ADS  Google Scholar 

  8. Parkins, S. and Kimble, H. J., 1999, Quantum State Transfer between Motion and Light.J. Opt. B. 1: 496.

    Article  ADS  Google Scholar 

  9. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., and Zeilinger, A., 2000, Quantum Cryptography with Entangled Photons. Phys. Rev. Lett. 84: 4729–4732;

    Article  ADS  Google Scholar 

  10. Naik, D. S., Peterson, C. G., White, A. G., Berglund, A. J., and Kwiat, P. G., 2000, Entangled State Quantum Cryptography: Eavesdropping on the Ekert Protocol. Phys. Rev. Lett. 84: 4733–4736;

    Article  ADS  Google Scholar 

  11. Tittel, W., Brendel, J., Zbinden, H., and Gisin, N., 2000, Quantum Cryptography Using Entangled Photons in Energy-Time Bell States. Phys. Rev. Lett. 84: 4737–4740.

    Article  ADS  Google Scholar 

  12. Gottesman, D. and Chuang, I. L., 1999, Demonstrating the Viability of Universal Quantum Computation Using Teleportation and Single-Qubit Operations. Nature 402: 390–393;

    Article  ADS  Google Scholar 

  13. Preskill, J., 1999, Plug-in Quantum Software. Nature 402: 357–358;

    Article  ADS  Google Scholar 

  14. Johnathon, D. and Plenio, M. B., 1999, Entanglement-Assisted Local Manipulation of Pure Quantum States. Phys. Rev. Lett. 83: 3566–3569.

    Article  MathSciNet  ADS  Google Scholar 

  15. Vitali, D., Tombesi, P., and Milburn, G., 1998, Quantum-State Protection in Cavities. Phys. Rev. A 57:4930–4944.

    Article  ADS  Google Scholar 

  16. Höffges, J. T., Baldauf, H. W., Lange, W., and Walther, H., 1997, Heterodyne Measurement of the Resonance Fluorescence of a Single Ion. J. Mod. Opt. 44: 1999–2010.

    Article  ADS  Google Scholar 

  17. Brunei, C., Lounis, B., Tamarat, P., and Orrit, M., 1999, Triggered Source of Single Photons Based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett. 83: 2722–2725.

    Article  ADS  Google Scholar 

  18. Hong, C. K. and Mandel, L., 1986, Experimental Realization of a Localized One-Photon State. Phys. Rev. Lett. 56: 58–60.

    Article  ADS  Google Scholar 

  19. Kim, J., Benson, O., Kan, H., and Yamamoto, Y., 1999, Single-Photon Turnstile Device. Nature 397: 500–503.

    Article  ADS  Google Scholar 

  20. Varcoe, B. T. H., Brattke, S., Weidinger, M., and Walther, H., 2000, Preparing Pure Photon Number States of the Radiation Field. Nature 403: 743–746.

    Article  ADS  Google Scholar 

  21. Weidinger, M., Varcoe, B. T. H., Heerlein, R., and Walther, H., 1999, Trapping States in the Micromaser. Phys. Rev. Lett. 82: 3795–3798.

    Article  ADS  Google Scholar 

  22. Meyer, M., Briegel, H.-J., and Walther, H., 1997, Ion-Trap Laser. Europhys. Lett. 37: 317–322.

    Article  ADS  Google Scholar 

  23. Law, C. K. and Eberly, J. H., 1996, Arbitrary Control of a Quantum Electromagnetic Field. Phys. Rev. Lett. 76: 1055–1058;

    Article  ADS  Google Scholar 

  24. Law, C. K. and Kimble, H. J., 1997, Deterministic Generation of a Bit-Steam of Single-Photon Pulses. J. Mod. Opt. 44: 2067–2074;

    ADS  Google Scholar 

  25. Domokos, P., Brune, M., Raimond, J. M. and Haroche, S., 1998, Photon-Number-State Generation with a Single Two-Level Atom in a Cavity: A Proposal. Eur. Phys. J. D 1: 1–4.

    ADS  Google Scholar 

  26. Kuhn, A., Hennrich, M., Bondo, T., and Rempe, G., 1999, Controlled Generation of Single Photons from a Strongly Coupled Atom-Cavity System. Appl Phys. B, 69: 373–377;

    Article  ADS  Google Scholar 

  27. Pinkse, P. W. H., Fischer, T., Maunz, P., and Rempe, G., 2000, Trapping an Atom with Single Photons. Nature 404: 365–368;

    Article  ADS  Google Scholar 

  28. Ye, J., Vernooy, D. W., and Kimble, H. J., 2000, Trapping of Single Atoms in Cavity QED. Phys. Rev. Lett. 83: 4987–4990;

    Article  ADS  Google Scholar 

  29. Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S., and Kimble, H. J., 2000, The Atom-Cavity Microscope: Single Atoms Bound in Orbit by Single Photons. Science 287: 1447–1453.

    Article  ADS  Google Scholar 

  30. See, for example, Scully, M. O. and Zubairy, M. S., 1997, Quantum Optics, Cambridge University Press.

    Book  Google Scholar 

  31. Rempe, G., Schmidt-Kaler, F., and Walther, H., 1990, Observation of Sub-Poissonian Photon Statistics in a Micromaser. Phys. Rev. Lett. 64: 2783–2786.

    Article  ADS  Google Scholar 

  32. Rempe, G., Walther, H., and Klein, N., 1987, Observation of Quantum Collapse and Revival in a One-Atom Maser. Phys. Rev. Lett. 58: 353–356.

    Article  ADS  Google Scholar 

  33. Englert, B., Löffler, M., Benson, O., Weidinger, M., Varcoe, B., and Walther, H., 1998, Entangled Atoms in Micromaser Physics. Fortschr. Phys. 46: 897–926.

    Article  Google Scholar 

  34. Krause, J., Scully, M.O., and Walther, H., 1987, State Reduction and n) State Preparation in a High-Q Micromaser. Phys. Rev. A 36: 4547–4550.

    Article  ADS  Google Scholar 

  35. Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M. and Haroche, S., 1999, Seeing a Single Photon without Destroying it. Nature 400: 239–242.

    Article  ADS  Google Scholar 

  36. A detailed account of the simulations used in this paper and a comparison with ideal micromaser theory can be found in Brattke, S., Englert, B.-G., Varcoe, B. T. H., and Walther, H., 2000, Fock States in a Cyclically Pumped One-Atom Maser. J. Mod. Opt. 47:2857–2867.

    MathSciNet  ADS  MATH  Google Scholar 

  37. Brattke et al., 2001, Preparing Fock States in the Micromaser. Optics Express 8: 131–144.

    Article  ADS  Google Scholar 

  38. Brattke, S., Varcoe, B. T. H., and Walther, H., 2001, Generating Photon Number States on Demand Via Cavity. Phys. Rev. Lett. 86: 3534–3537.

    Article  ADS  Google Scholar 

  39. Hennrich, M., Legero, T., Kuhn, A., and Rempe, G., 2000, Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity. Phys. Rev. Lett. 85: 4872–4875.

    Article  ADS  Google Scholar 

  40. Diedrich, F. and Walther, H., 1987, Nonclassical Radiation of a Single Stored Ion. Phys. Rev. Lett. 58: 203–206.

    Article  ADS  Google Scholar 

  41. Höffges, J.T., Baldauf, H. W., Eichler, T., Helmfrid, S.R., and Walther, H., 1997, Heterodyne Measurement of the Fluorescent Radiation of a Single Trapped Ion. Opt. Comm. 133: 170–174.

    Article  ADS  Google Scholar 

  42. Pellizzari, T., Gardiner, S. A., Cirac, J. I., and Zoller, P., 1995, Decoherence, Continuous Observation, and Quantum Computing, a Cavity QED Model. Phys. Rev. Lett. 75: 3788–3791.

    Article  ADS  Google Scholar 

  43. Zheng S. B. and Guo, G. C., 2000, Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. Rev. Lett. 85: 2392–2395.

    Article  ADS  Google Scholar 

  44. Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W., and Walther, H., 2001, A Single Ion as a Nanoscopic Probe of an Optical Field. Nature 414: 49–51.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walther, H. (2002). Generation of Photon Number States on Demand. In: Mohan, M. (eds) Current Developments in Atomic, Molecular, and Chemical Physics with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0115-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0115-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4930-3

  • Online ISBN: 978-1-4615-0115-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics