Skip to main content

Basic Structures of Superconvergence in Finite Element Analysis

  • Conference paper
Book cover Recent Progress in Computational and Applied PDES
  • 324 Accesses

Abstract

Superconvergence for second order elliptic finite elements on uniform meshes is discussed. The element orthogonality analysis method and the orthogonality correction technique are especially emphasized. There are two basic structures of superconvergence, i.e. Gauss-Lobatto points and symmetric points. Their accuracy and global property are also analysed. Four main principles in using superconvergence are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bacuta, J. H. Bramble, J. Pasciak. New interpolation results and applications to finite element methods for elliptic boundary value problems. To appear.

    Google Scholar 

  2. C.Bacuta, J. H. Bramble and J. Pasciak. Using finite element tools in proving shift theorems for elliptic boundary value problems. To appear in “Numerical Linear Algebra with Applications”..

    Google Scholar 

  3. C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, New-York, 1988.

    MATH  Google Scholar 

  4. N. Bleistein and R. Handelsman. Asymptotic expansions of integrals. Holt, Rinehart and Winston, New York, 1975.

    MATH  Google Scholar 

  5. S. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  6. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North Holland, Amsterdam,1978.

    MATH  Google Scholar 

  7. M. Dauge. Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics 1341. Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  8. A. Erdelyi. Asymptotic Expansions. Dover Publications, Inc., New York, 1956.

    MATH  Google Scholar 

  9. V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  10. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.

    MATH  Google Scholar 

  11. P. Grisvard. Singularities in Boundary Value Problems. Masson, Paris, 1992.

    MATH  Google Scholar 

  12. R. B. Kellogg. Interpolation between subspaces of a Hilbert space ,Technical note BN-719. Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, 1971.

    Google Scholar 

  13. V. Kondratiev. Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc., 16:227–313, 1967.

    Google Scholar 

  14. V. A. Kozlov, V. G. Mazya and J. Rossmann. Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society, Mathematical Surveys and Monographs, vol. 52, 1997.

    Google Scholar 

  15. J. L. Lions and E. Magenes. Non-homogeneous Boundary Value Problems and Applications, I. Springer-Verlag, New York, 1972.

    Book  Google Scholar 

  16. J. L. Lions and P. Peetre. Sur une classe d’espaces d’interpolation. Institut des Hautes Etudes Scientifique. Publ.Math., 19:5–68, 1964.

    MathSciNet  MATH  Google Scholar 

  17. S. A. Nazarov and B. A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Expositions in Mathematics, vol. 13, de Gruyter, New York, 1994.

    Google Scholar 

  18. J. Nečas . Les Methodes Directes en Theorie des Equations Elliptiques. Academia, Prague,1967.

    MATH  Google Scholar 

  19. F. W. Olver. Asymptotics and Special Functions. Academic Press, New York, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Chen, C. (2002). Basic Structures of Superconvergence in Finite Element Analysis. In: Chan, T.F., Huang, Y., Tang, T., Xu, J., Ying, LA. (eds) Recent Progress in Computational and Applied PDES. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0113-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0113-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4929-7

  • Online ISBN: 978-1-4615-0113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics