Skip to main content

Neural Mechanisms of Attentional Control

  • Chapter
Visual Attention Mechanisms
  • 230 Accesses

Abstract

In the last 30 years, an extensive and detailed understanding has emerged of the mechanisms that permit an observer to perceive selectively only those aspects of a scene that are relevant to the task at hand. Much of the foundation of this knowledge is behavioral, but increasingly evidence about the brain mechanisms of attention has accumulated from neuropsychological analysis of brain-damaged patients, from single cell recordings taken in awake, behaving monkeys, and from functional neuroimaging (PET and fMRI) in behaving human subjects. In the sections that follow, I will briefly summarize some of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helmholtz, H. von (1925). Treatise on Physiological Optics (Vol 3). (3rd ed., Vol. III, J. P. C. Southhall, Ed. & Trans.). Washington, DC: The Optical Society of America. (Original work published 1866)

    Google Scholar 

  2. Yantis, S. (1998). Control of visual attention. In H. Pashler (Ed.), Attention(pp. 223–256). London: Psychology Press.

    Google Scholar 

  3. Yantis, S. (2000). Stimulus-driven and goal-directed aspects of attentional control. In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII. Cambridge, MA: MIT Press.

    Google Scholar 

  4. Eriksen, C. W., & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Perception & Psychophysics, 12, 201–204.

    Article  Google Scholar 

  5. LaBerge, D. (1983). The spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9, 371–379.

    Article  Google Scholar 

  6. Downing, C. J., & Pinker, S. (1985). The spatial structure of visual attention. In M. Posner & O. Martin (Eds.), Attention and performance XI (pp. 171–187). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  7. Bahcall, D. O., & Kowler, E. (1998). Attention interference at small spatial separations. Vision Research, 39, 71–86.

    Article  Google Scholar 

  8. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  Google Scholar 

  9. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.

    Article  Google Scholar 

  10. Kahneman, D, Henik, A. (1981). Perceptual organization and attention. In M. Kubovy & J.R. Pomerantz (Eds.), Perceptual Organization (pp. 181–211). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  11. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501–517.

    Article  Google Scholar 

  12. Egly, R., Driver, J., & Rafal, R. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161–177.

    Article  Google Scholar 

  13. Moore, C., Yantis, S., & Vaughan, B. (1998). Object-based visual selection: Evidence from perceptual completion. Psychological Science, 9, 104–110.

    Article  Google Scholar 

  14. Behrmann, M., Zemel, R. S., & Mozer, M. C. (1998). Object-based attention and occlusion: Evidence from normal participants and a computational model. Journal of Experimental Psychology: Human Perception & Performance, 24, 1011–1036.

    Article  Google Scholar 

  15. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784.

    Article  Google Scholar 

  16. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neuroscience, 70,909–919.

    Google Scholar 

  17. Motter, B. C. (1994). Neural correlates of feature selective memory and pop-out in extrastriate area V4. Journal of Neuroscience, 14,2190–2199.

    Google Scholar 

  18. Treue, S., & Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541.

    Article  Google Scholar 

  19. McAdams, C.J. & Maunsell, J.H.R. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19, 431–441.

    Google Scholar 

  20. Chelazzi, L, Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345–347.

    Article  Google Scholar 

  21. Chelazzi, L., Duncan, J., Miller, E.K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940.

    Google Scholar 

  22. Reynolds, J.H., Chelazzi, L., & Desimone, R. (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736–1753.

    Google Scholar 

  23. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.

    Article  Google Scholar 

  24. Corbetta, M., Miezin, F., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 77,2383–2402.

    Google Scholar 

  25. Somers, D.C., Dale, A.M., Seiffert, A.E., & Tootell, R.B.H. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proceedings of the National Academy of Sciences USA, 96, 1663–1668.

    Article  Google Scholar 

  26. Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the ’spotlight’ of attention. Nature Neuroscience, 2, 370–374.

    Article  Google Scholar 

  27. Tootell, R.B.H., Hadjikhani, N., Hall, E. K., Marrett, S., Vanduffe, W., Vaughan, J.T., & Dale, A. (1998). The retinotopy of visual spatial attention. Neuron, 21, 1409–1422.

    Article  Google Scholar 

  28. Heinze, H. J., Mangun, G. R., et al. (1994). Combined temporal and spatial imaging of brain activity during visual selection attention in humans. Nature, 372, 543–546.

    Article  Google Scholar 

  29. Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108–111.

    Article  Google Scholar 

  30. O’Craven, K. M., Rosen, B. R., Kwong, K. K., Triesman, A., & Savoy, R. L. (1997). Voluntary attention modulates fMRI activity in human MT/MST. Neuron, 18, 591–598.

    Article  Google Scholar 

  31. Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal ofNeuroscience, 14, 6336– 6353.

    Google Scholar 

  32. Kanwisher, N., McDermott, J., & Chun, M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.

    Google Scholar 

  33. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In J. Ingle, M. A. Goodale, & R. J. W. (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  34. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  Google Scholar 

  35. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience, 18, 193–222.

    Article  Google Scholar 

  36. Baddeley, A. (1986). Working memory. Oxford: Clarendon Press.

    Google Scholar 

  37. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49.

    Article  Google Scholar 

  38. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.

    Article  Google Scholar 

  39. D’Esposito, M., Detre, J. A. et al. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279–281.

    Article  Google Scholar 

  40. Fuster, J. (1980). The prefrontal cortex. New York: Raven Press.

    Google Scholar 

  41. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E. S., Minoshima, S., & Minton, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623– 625.

    Article  Google Scholar 

  42. Miller, E. K. (1999). The prefrontal cortex: Complex neural properties for complex behavior. Neuron, 22, 15–17.

    Article  Google Scholar 

  43. Miller, E.K. (2000). The neural basis of top-down control of visual attention in the prefrontal cortex. In S. Monsell & J. Driver (Eds.). Attention and Performance XVIII. Cambridge, MA: MIT Press.

    Google Scholar 

  44. Smith E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5–42.

    Article  Google Scholar 

  45. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.

    Article  Google Scholar 

  46. Bushnell, M.C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46, 755–771.

    Google Scholar 

  47. Corbetta, M., Miezin, F., Shulman, G., & Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13, 1202–1226.

    Google Scholar 

  48. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–297.

    Article  Google Scholar 

  49. Awh, E., Jonides, J., & Reuter-Lorenz, P.A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24, 780–790.

    Article  Google Scholar 

  50. Awh, E., & Jonides, J. (1998). Spatial working memory and spatial selective attention. In R. Parasuraman (Ed.), The Attentive Brain (pp. 353–380). Cambridge, MA: MIT Press.

    Google Scholar 

  51. Awh, E., Jonides, J., Smith, E.E., Buxton, R.B., Frank, L.R., Love, T., Wong, E.C., & Gmeindl, L. (in press). Rehearsal in spatial working memory: Evidence from neuroimaging. Psychological Science, 10,433-437.

    Google Scholar 

  52. Constantinidis, C., & Steinmetz, M.A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. Journal of Neurophysiology, 76, 1352–1355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yantis, S. (2002). Neural Mechanisms of Attentional Control. In: Cantoni, V., Marinaro, M., Petrosino, A. (eds) Visual Attention Mechanisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0111-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0111-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4928-0

  • Online ISBN: 978-1-4615-0111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics