Statistical Characterization of Spatial Variability in Sedimentary Rock



Spatial variability is a ubiquitous feature of sedimentary rock. The physical properties of sedimentary formations are not smoothly varying functions of position, but are subject to abrupt changes of various magnitudes. These abrupt contrasts in rock properties affect the propagation and dispersion of seismic energy, with potentially important implications for geophysical studies. Spatial heterogeneity is also a dominant control on fluid and contaminant movement, thereby affecting the dynamics of groundwater aquifers and petroleum reservoirs.


Hydraulic Conductivity Spatial Variability Reflection Coefficient Sedimentary Rock Rock Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, J., 1961, L’analyse statistique et probabiliste des sismogrammes, Revue de l’Institut Francais du Pétrole 16:1–85.Google Scholar
  2. Dagan, G., 1989, Flow and Transport in Porous Formations, Springer-Verlag, New York.CrossRefGoogle Scholar
  3. Deutsch, C. V., and Journel, A. G., 1998, Geostatistical Software Library and User’s Guide, 2nd edition, Oxford University Press, New York.Google Scholar
  4. Feller, W., 1971, An Introduction to Probability Theory and its Applications, Volume 2, Wiley, New York.Google Scholar
  5. Gaynor, G. C., Chang, E. Y., Painter, S. L., and Paterson, L., 2000, Applications of Lévy random fractal simulation techniques in modeling reservoir mechanisms in the Kuparuk River field, North Slope, Alaska, SPE Reservoir Eval. and Eng. 3:263–271.Google Scholar
  6. Gelhar, L. M., 1993, Stochastic Subsurface Hydrology, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  7. Goff, J. A., and Holliger, K., 1999, Nature and origin of upper crustal velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs, J. Geophys. Res. 104:13,169–13,182.CrossRefGoogle Scholar
  8. Goggin, D. J., Chandler, M. A., Kocurek, G., and Lake, L. W., 1992, Permeability transects of eolian sands and their use in generating random permeability fields, SPE Formation Evaluation 92:7–16.Google Scholar
  9. Herrmann, F. J. 1998, Multiscale analysis of well and seismic data, in: Mathematical Methods in Geophysical Imaging V, (S. Hassanzadeh, ed), International Society of Optical Engineers, Bellingham, Washington, pp. 180–208.Google Scholar
  10. Hewett, T. A., 1986, Fractal distributions of reservoir heterogeneity and their influence on fluid transport, in: Proceedings of the 6 1 st Annual Technical Conference of the Society of Petroleum Engineers, Rep. 15386, Society of Petroleum Engineers, Richardson, Texas.Google Scholar
  11. Holliger, K., and Goff, J. A., A generic model for the 1/f-nature of seismic velocity fluctuations, this volume.Google Scholar
  12. Hurst, H. E., 1957, A suggested statistical model of some time series which occur in nature, Nature 180:494.CrossRefGoogle Scholar
  13. Joumel, A. G., and Huijbregts, Ch. J., 1978, Mining Geostatistics, Academic Press, New York.Google Scholar
  14. Krige, D. G., 1970, The role of mathematical statistics in improving ore valuation techniques in South African gold mines, in: Topics in Mathematical Geology (M. A. Romanova and O. V. Sarmanov, eds., Russian translations by J. P. Fitzsimmons), Consultants Bureau, New York, pp. 243–261.Google Scholar
  15. Lévy, P., 1937, Théorie de l’Addition des Variables Aléatoires, Gauthier-Villars, Paris.Google Scholar
  16. Liu, H. H., and Molz, F. J., 1997a, Comment on “Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations” by Scott Painter, Water Resour. Res. Google Scholar
  17. Liu, H. H., and Molz, F. J., 1997b, Multifractal analyses of hydraulic conductivity distributions, Water Resour. Res. 33:2483–2488.CrossRefGoogle Scholar
  18. Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, Freeman, New York.Google Scholar
  19. Mandelbrot, B. B., 1969, Robustness of the resealed range R/S in the measurement of noncyclic long run statistical dependence, Water Resour. Res. 5:967–988.CrossRefGoogle Scholar
  20. Mandelbrot, B. B., and Van Ness, J. W., 1968, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10:422–437.CrossRefGoogle Scholar
  21. Marsan, D., and Bean, C. J., Multifractal analyses and modeling of crustal heterogeneity, this volume.Google Scholar
  22. Molz, F. J., and Boman, G. K., 1993, A fractal-based stochastic interpolation scheme in subsurface hydrology, Water Resour. Res. 29:3769–3774.CrossRefGoogle Scholar
  23. Molz, F. J., and Boman, G. K., 1995, Further evidence of fractal structure in hydraulic conductivity distributions, Geophys. Res. Lett. 22:2545–2548.CrossRefGoogle Scholar
  24. Neuman, S. P., 1990, Universal scaling of hydraulic conductivities and dispersivities in geological media, Water Resour. Res. 26:1749–1758.CrossRefGoogle Scholar
  25. Neuman, S. P., 1994, Generalized scaling of permeability: Validation and effect of support scale, Geophys. Res. Lett. 21:349–352.CrossRefGoogle Scholar
  26. O’Doherty, R. F., and Anstey, N. A., 1971, Reflections on amplitudes, Geophys. Prosp. 19:440–458.Google Scholar
  27. Painter, S., 1995, Random fractal models of heterogeneity: The Levy-stable approach, Math. Geol. 27:813–830.CrossRefGoogle Scholar
  28. Painter, S., 1996a, Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations, Water Resour. Res. 32:1183–1195.CrossRefGoogle Scholar
  29. Painter, S., 1996b, Stochastic interpolation of aquifer properties using fractional Lévy motion, Water Resour. Res.32:1323–1332.CrossRefGoogle Scholar
  30. Painter, S., 1998, Numerical method for conditional simulation of Levy random fields, Math. Geol. 30:163–179.CrossRefGoogle Scholar
  31. Painter, S., 2001, Flexible scaling model for use in random field simulation of hydraulic conductivity, Water Resour. Res. 37:1155–1163.CrossRefGoogle Scholar
  32. Painter, S., and Paterson, L., 1994, Fractional Lévy motion as a model for spatial variability in sedimentary rock, Geophys. Res. Letts. 21:2857–2860.CrossRefGoogle Scholar
  33. Painter, S., Beresford, G., and Paterson, L., 1995, On the distribution of seismic reflection coefficients and seismic amplitudes, Geophysics 60:1187–1194.Google Scholar
  34. Painter, S., Paterson, L., and Boult, P., 1997, Improved technique for stochastic interpolation of reservoir properties, Soc. Petr. Eng. J. 2:48–57.Google Scholar
  35. Pilkington, M., and Todoeschuck, J. P., 1990, Stochastic inversion for scaling geology, Geophys. J. Int. 102:205–217.CrossRefGoogle Scholar
  36. Taqqu, M. S., 1987, Random processes with long-range dependence and high variability, J. Geophys. Res. 92:9683–9686.CrossRefGoogle Scholar
  37. Todoeschuck, J. P., and Jenson, O. G., 1988, Joseph geology and seismic deconvolution, Geophysics 53:1410–1414.Google Scholar
  38. Tubman, K. M., and Crane, S. D. 1995, Vertical versus horizontal well log variability and application to fractal reservoir modeling, in: Fractals in Petroleum Geology and Earth Processes (C. C. Barton and P. R. La Pointe, eds.), Plenum Press, New York, pp.179–193.Google Scholar
  39. Walden, A. T., and Hosken, J. W. J., 1985, An investigation of the spectral properties of primary reflection coefficients, Geophys. Prosp. 33:400–435.CrossRefGoogle Scholar
  40. Walden, A. T., and Hosken, J. W. J., 1986, The nature of the non-gaussianity of primary reflection coefficients and its significance for deconvolution, Geophys. Prosp. 34:1038–1066.CrossRefGoogle Scholar
  41. Zolotarev, V. M., 1986, One-Dimensional Stable Distributions, American Mathematical Society, Providence, Rhode Island.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Center for Nuclear Waste Regulatory AnalysesSouthwest Research InstituteSan AntonioUSA

Personalised recommendations