Skip to main content

Statistical Characterization of Spatial Variability in Sedimentary Rock

  • Chapter

Abstract

Spatial variability is a ubiquitous feature of sedimentary rock. The physical properties of sedimentary formations are not smoothly varying functions of position, but are subject to abrupt changes of various magnitudes. These abrupt contrasts in rock properties affect the propagation and dispersion of seismic energy, with potentially important implications for geophysical studies. Spatial heterogeneity is also a dominant control on fluid and contaminant movement, thereby affecting the dynamics of groundwater aquifers and petroleum reservoirs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard, J., 1961, L’analyse statistique et probabiliste des sismogrammes, Revue de l’Institut Francais du Pétrole 16:1–85.

    Google Scholar 

  • Dagan, G., 1989, Flow and Transport in Porous Formations, Springer-Verlag, New York.

    Book  Google Scholar 

  • Deutsch, C. V., and Journel, A. G., 1998, Geostatistical Software Library and User’s Guide, 2nd edition, Oxford University Press, New York.

    Google Scholar 

  • Feller, W., 1971, An Introduction to Probability Theory and its Applications, Volume 2, Wiley, New York.

    Google Scholar 

  • Gaynor, G. C., Chang, E. Y., Painter, S. L., and Paterson, L., 2000, Applications of Lévy random fractal simulation techniques in modeling reservoir mechanisms in the Kuparuk River field, North Slope, Alaska, SPE Reservoir Eval. and Eng. 3:263–271.

    Google Scholar 

  • Gelhar, L. M., 1993, Stochastic Subsurface Hydrology, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Goff, J. A., and Holliger, K., 1999, Nature and origin of upper crustal velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs, J. Geophys. Res. 104:13,169–13,182.

    Article  Google Scholar 

  • Goggin, D. J., Chandler, M. A., Kocurek, G., and Lake, L. W., 1992, Permeability transects of eolian sands and their use in generating random permeability fields, SPE Formation Evaluation 92:7–16.

    Google Scholar 

  • Herrmann, F. J. 1998, Multiscale analysis of well and seismic data, in: Mathematical Methods in Geophysical Imaging V, (S. Hassanzadeh, ed), International Society of Optical Engineers, Bellingham, Washington, pp. 180–208.

    Google Scholar 

  • Hewett, T. A., 1986, Fractal distributions of reservoir heterogeneity and their influence on fluid transport, in: Proceedings of the 6 1 st Annual Technical Conference of the Society of Petroleum Engineers, Rep. 15386, Society of Petroleum Engineers, Richardson, Texas.

    Google Scholar 

  • Holliger, K., and Goff, J. A., A generic model for the 1/f-nature of seismic velocity fluctuations, this volume.

    Google Scholar 

  • Hurst, H. E., 1957, A suggested statistical model of some time series which occur in nature, Nature 180:494.

    Article  Google Scholar 

  • Joumel, A. G., and Huijbregts, Ch. J., 1978, Mining Geostatistics, Academic Press, New York.

    Google Scholar 

  • Krige, D. G., 1970, The role of mathematical statistics in improving ore valuation techniques in South African gold mines, in: Topics in Mathematical Geology (M. A. Romanova and O. V. Sarmanov, eds., Russian translations by J. P. Fitzsimmons), Consultants Bureau, New York, pp. 243–261.

    Google Scholar 

  • Lévy, P., 1937, Théorie de l’Addition des Variables Aléatoires, Gauthier-Villars, Paris.

    Google Scholar 

  • Liu, H. H., and Molz, F. J., 1997a, Comment on “Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations” by Scott Painter, Water Resour. Res.

    Google Scholar 

  • Liu, H. H., and Molz, F. J., 1997b, Multifractal analyses of hydraulic conductivity distributions, Water Resour. Res. 33:2483–2488.

    Article  Google Scholar 

  • Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, Freeman, New York.

    Google Scholar 

  • Mandelbrot, B. B., 1969, Robustness of the resealed range R/S in the measurement of noncyclic long run statistical dependence, Water Resour. Res. 5:967–988.

    Article  Google Scholar 

  • Mandelbrot, B. B., and Van Ness, J. W., 1968, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10:422–437.

    Article  Google Scholar 

  • Marsan, D., and Bean, C. J., Multifractal analyses and modeling of crustal heterogeneity, this volume.

    Google Scholar 

  • Molz, F. J., and Boman, G. K., 1993, A fractal-based stochastic interpolation scheme in subsurface hydrology, Water Resour. Res. 29:3769–3774.

    Article  Google Scholar 

  • Molz, F. J., and Boman, G. K., 1995, Further evidence of fractal structure in hydraulic conductivity distributions, Geophys. Res. Lett. 22:2545–2548.

    Article  Google Scholar 

  • Neuman, S. P., 1990, Universal scaling of hydraulic conductivities and dispersivities in geological media, Water Resour. Res. 26:1749–1758.

    Article  Google Scholar 

  • Neuman, S. P., 1994, Generalized scaling of permeability: Validation and effect of support scale, Geophys. Res. Lett. 21:349–352.

    Article  Google Scholar 

  • O’Doherty, R. F., and Anstey, N. A., 1971, Reflections on amplitudes, Geophys. Prosp. 19:440–458.

    Google Scholar 

  • Painter, S., 1995, Random fractal models of heterogeneity: The Levy-stable approach, Math. Geol. 27:813–830.

    Article  Google Scholar 

  • Painter, S., 1996a, Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations, Water Resour. Res. 32:1183–1195.

    Article  Google Scholar 

  • Painter, S., 1996b, Stochastic interpolation of aquifer properties using fractional Lévy motion, Water Resour. Res.32:1323–1332.

    Article  Google Scholar 

  • Painter, S., 1998, Numerical method for conditional simulation of Levy random fields, Math. Geol. 30:163–179.

    Article  Google Scholar 

  • Painter, S., 2001, Flexible scaling model for use in random field simulation of hydraulic conductivity, Water Resour. Res. 37:1155–1163.

    Article  Google Scholar 

  • Painter, S., and Paterson, L., 1994, Fractional Lévy motion as a model for spatial variability in sedimentary rock, Geophys. Res. Letts. 21:2857–2860.

    Article  Google Scholar 

  • Painter, S., Beresford, G., and Paterson, L., 1995, On the distribution of seismic reflection coefficients and seismic amplitudes, Geophysics 60:1187–1194.

    Google Scholar 

  • Painter, S., Paterson, L., and Boult, P., 1997, Improved technique for stochastic interpolation of reservoir properties, Soc. Petr. Eng. J. 2:48–57.

    Google Scholar 

  • Pilkington, M., and Todoeschuck, J. P., 1990, Stochastic inversion for scaling geology, Geophys. J. Int. 102:205–217.

    Article  Google Scholar 

  • Taqqu, M. S., 1987, Random processes with long-range dependence and high variability, J. Geophys. Res. 92:9683–9686.

    Article  Google Scholar 

  • Todoeschuck, J. P., and Jenson, O. G., 1988, Joseph geology and seismic deconvolution, Geophysics 53:1410–1414.

    Google Scholar 

  • Tubman, K. M., and Crane, S. D. 1995, Vertical versus horizontal well log variability and application to fractal reservoir modeling, in: Fractals in Petroleum Geology and Earth Processes (C. C. Barton and P. R. La Pointe, eds.), Plenum Press, New York, pp.179–193.

    Google Scholar 

  • Walden, A. T., and Hosken, J. W. J., 1985, An investigation of the spectral properties of primary reflection coefficients, Geophys. Prosp. 33:400–435.

    Article  Google Scholar 

  • Walden, A. T., and Hosken, J. W. J., 1986, The nature of the non-gaussianity of primary reflection coefficients and its significance for deconvolution, Geophys. Prosp. 34:1038–1066.

    Article  Google Scholar 

  • Zolotarev, V. M., 1986, One-Dimensional Stable Distributions, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Painter, S. (2003). Statistical Characterization of Spatial Variability in Sedimentary Rock. In: Goff, J.A., Holliger, K. (eds) Heterogeneity in the Crust and Upper Mantle. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0103-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0103-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4924-2

  • Online ISBN: 978-1-4615-0103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics