Skip to main content

Ductile Instabilities and Structural Heterogeneity in the Lower Continental Crust

  • Chapter
Heterogeneity in the Crust and Upper Mantle

Abstract

Geological observations, particularly of evidence for deformation, are made at scales ranging from 10-8 m to 104 m. Structural geologists use field relations to determine the relative timing of deformation events, and to determine their cumulative effect on structural patterns in the rock. This approach can be used in a qualitative sense when interpreting gradients in bulk accumulated (finite) strain. Working at different scales across strain gradients allows structural geologists to relate the final geometry of structures in naturally deformed rocks to the processes of formation. Using this approach, field studies have documented a remarkable self-similarity of structures and fabrics in ductilely deformed rocks across this 1012 range of scales. This suggests that the processes controlling development of many natural structures are not dependent on the scale of the deforming zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. B., Osmundsen, P. T., and Jolivet, L., 1994, Deep crustal fabrics and a model for the extensional collapse of the Southwest Norwegian Caledonides, J Struct. Geol. 16:1191–1203.

    Article  Google Scholar 

  • Arbaret, L., Burg, J.-P., Zeilinger, G., Chaudry, N., Hussain, S., and Dawod, H., 2000, Pre-collisional anastomosing shear zones in the Kohistan Arc, NW Pakistan, in: Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya, Special Publication 170 (M. A. Khan, P. J. Treloar, M. P. Searle, and M. Q. Jan, eds.), Geological Society London, pp. 295–311.

    Google Scholar 

  • Bell, T. H., 1981, Foliation development; the contribution, geometry and significance of progressive, bulk, inhomogeneous shortening, Tectonophysics 75:273–296.

    Article  Google Scholar 

  • Bell, T. H., 1985, Deformation partitioning and porphyroblast rotation in metamorphic rocks; a radical reinterpretation, J. Metam. Geol. 3:109–118.

    Article  Google Scholar 

  • Berthé D., Choukroune, P., and Jegouzo, P., 1979, Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South American shear zone, J. Struct. Geol. 1:31–42.

    Article  Google Scholar 

  • Biot, M. A., 1965, Mechanics of Incremental Deformations, Wiley, New York.

    Google Scholar 

  • Blenkinsop, T., 2000, Deformation Microstructures and Mechanisms in Minerals and Rocks, Kluwer, Dordrecht.

    Google Scholar 

  • Bonnay, M., Collins, W. J., Sawyer, E. W., and Wiebe, R. A., 2000, Mt. Hay: Granite magma transfer through the deep crust or a buried high-level plutonic complex? in: Granite Magma Segregation and Transfer During Compressional Deformation in the Deep Crust? Proterozoic Arunta Inlier, Central Australia, Field Trip Guide FA4 (W. J. Collins, ed.), Geological Society of Australia Incorporated, pp. 8–46.

    Google Scholar 

  • Bons, P.D., 1993, Experimental deformation of polyphase rock analogues, Geologica Ultrajectina, 110:1–207.

    Google Scholar 

  • Bouchez, J. L., 1997, Granite is never isotropic: An introduction of AMS studies of granitic rocks, in: Granite: From Segregation of Melt to Emplacement Fabrics, Petrology and Structural Geology Series 8 (J. L. Bouchez, D. H. W. Hutton, and W. E. Stephens, eds.), Kluwer, Dordrecht.

    Google Scholar 

  • Boyer, S. E., 1984, Origin and significance of compositional layering in Late Precambrian sediments, Blue Ridge Province, North Carolina, USA, J. Struct. Geol. 6:121–133.

    Article  Google Scholar 

  • Brace, W. F., and Kohlstedt, D. L., 1980. Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res. 85:6248–6252.

    Article  Google Scholar 

  • Burg, J. P., 1999, Ductile structures and instabilities; their implication for Variscan tectonics in the Ardennes, Tectonophysics 309:1–25.

    Article  Google Scholar 

  • Burg, J. P., and Podladchikov, Y.. 1999, Lithospheric scale folding: Numerical modelling and application to the Himalayan syntaxes, Int. J. Earth Sci. 88:190–200.

    Article  Google Scholar 

  • Burg, J. P., Iglesias, M., Laurent, P., Matte, P., and Ribeiro, A., 1981, Variscan intracontinental deformation; the Coimbra-Cordoba shear zone (SW Iberian Peninsula), Tectonophysics 78:161–177.

    Article  Google Scholar 

  • Burg, J. P., Davy, P., and Martinod, J., 1994, Shortening of analogue models of the continental lithosphere; new hypothesis for the formation of the Tibetan plateau, Tectonics 13:475–483.

    Article  Google Scholar 

  • Casey, M., Dietrich, D., and Ramsay, J.G., 1983, Methods for determining deformation history for chocolate tablet boudinage with fibrous crystals. Tectonophysics 92:211–239.

    Article  Google Scholar 

  • Choukroune, P., and Gapais, C., 1983, Strain pattern in the Aar Granite (Central Alps); orthogneiss developed by bulk inhomogeneous flattening,’ Struct. Geol. 5:411–418.

    Article  Google Scholar 

  • Christensen, N. L., and Mooney, W. D., 1995, Seismic velocity structure and composition of the continental crust; a global view. J. Geophys. Res. 100:9761–9788.

    Article  Google Scholar 

  • Cloetingh, S., 1988, Intraplate stresses; a tectonic cause for third-order cycles in apparent sea level? Society of Economic Paleontologists and Mineralogists, Special Publication 42, pp. 19–29.

    Google Scholar 

  • Cloos, E., 1947, Boudinage, EOS 28:626–632.

    Google Scholar 

  • Cobbold, P. R., and Quinquis, H., 1980, Development of sheath folds in shear regimes, J. Struct. Geol. 2:119–126.

    Article  Google Scholar 

  • Cobbold, P. R., Cosgrove, J. W.. and Summers, J. M., 1971, Development of internal structures in deformed anisotropic rocks, Tectonophysics 112:23–53.

    Article  Google Scholar 

  • Collins, W. J., 2000, Introduction to the Arunta Inlier. in: Granite Magma Segregation and Transfer During Compressional Deformation in the Deep Crust? Proterozoic Arunta Inlier, Central Australia, Field Trip Guide FA4 (W. J. Collins, ed.), Geological Society of Australia Incorporated, pp. 1–7.

    Google Scholar 

  • Collins, W. J., and Shaw, R. D., 1995. Geochronological constraints on orogenic events in the Arunta Inlier: A review, Precambrian Res. 71:315–346.

    Article  Google Scholar 

  • Cosgrove, J. W., 1997. The influence of mechanical anisotropy on the behavior of the lower crust, Tectonophysics 280:1–14.

    Article  Google Scholar 

  • Davis, G. H., 1999, Structural Geology of the Colorado Plateau Region of Southern Utah, with Special Emphasis on Deformation Bands, Special Paper 342, Geological Society of America, Boulder.

    Google Scholar 

  • Davis, G. H., and Hardy, J Jr., 1981, The Eagle Pass detachment, southeastern Arizona; product of mid-Miocene listric(?) normal faulting in the southern Basin and Range, Geol. Soc. Am. Bull. 92:1749–1762.

    Article  Google Scholar 

  • Davy, P.,and Cobbold, P. R., 1991, Experiments on shortening of a 4-layer model of the continental lithosphere. Tectonophysics 188:1–25.

    Article  Google Scholar 

  • Dennis, J. G. (ed.), 1967. International Tectonic Dictionary: English Terminology, Memoir 7, International Geological Congress, American Association of Petroleum Geologists, Tulsa.

    Google Scholar 

  • Dutruge, G., and Burg, J. P., 1997, Strain localisation in an orthogneiss laccolith (the Pinet Massif, Aveyron, southern France), Tectonophysics 280:47–60.

    Article  Google Scholar 

  • Dutruge, G., Burg, J. P., and Lapierre, J., 1995, Shear strain analysis and periodicity within shear gradients of metagranite shear zones, J. Struct. Geol. 17:819–830.

    Article  Google Scholar 

  • Fossen, H., Tikoff, B., and Teyssier, C.. 1994, Strain modeling of transpressional and transtensional deformation, Norsk Geol. Tidsskrift 74:134–145.

    Google Scholar 

  • Gapais, D., Bale, P., Choukroune, P., Cobbold, P. R., Mahjoub, Y., and Marquer, D., 1987, Bulk kinematics from shear zone patterns: some field examples, J. Struct. Geol. 9:635–646.

    Article  Google Scholar 

  • Ghosh, S. K, and Ramberg, H., 1976, Reorientation of inclusions by combination of pure shear and simple shear, Tectonophysics 34:1–70.

    Article  Google Scholar 

  • Glikson, A.Y., 1984, Granulite-Gneiss Terranes of the Southwestern Amnia Block, Central Australia.’ Glen Helen, Narwietooma, and Anburla 1:100,000 Sheet Areas, Bureau of Mineral Resources, Canberra, Australia, Record 1984/22.

    Google Scholar 

  • Goodwin, L. B., and Tikoff, B., 2002, Competency contrast, kinematics, and the development of foliations and lineations in the crust, J. Struct. Geol., in press.

    Google Scholar 

  • Goscombe, B., 1992, Intense noncoaxial shear and the development of mega-scale sheath folds in the Arunta block, central Australia, J. Struct. Geol. 13:299–318.

    Article  Google Scholar 

  • Hanmer, S., 2000, Matrix mosaics, brittle deformation, and elongate porphyroclasts: granulite facies microstructures in the Striding-Athabasca mylonite zone, western Canada, J. Struct. Geol. 22:947–967.

    Article  Google Scholar 

  • Hanmer, S., and Passchier, C., 1991, Shear-Sense Indicators; A Review, Geological Survey of Canada Paper 90–17, Ottawa.

    Book  Google Scholar 

  • Hatcher, R. D., Thomas, W. A., Viele, G. W. (eds.). 1989, The Appalachian-Ouichita Orogen in the United States: Decade of North American Geology, Geological Society of America, Boulder.

    Google Scholar 

  • Hippertt, J., 1999, Are S-C structures, duplexes and conjugate shear zones different manifestations of the same scale-invariant phenomenon?, J. Struct. Geol. 21:975–984.

    Article  Google Scholar 

  • Hobbs, B. E., Means, W. D., and Williams, P. F.. 1976, An Outline of Structural Geology, Wiley, New York.

    Google Scholar 

  • Hobbs, B. E., Milhlhaus, H. B., and Ord, A., 1990, Instability. softening. and localization of deformation, in: Deformation Mechanisms, Rheology, and Tectonics. Special Publication 54 (R. J. Knipe and E. H. Rutter. eds.), Geological Society London, pp. 143–165.

    Google Scholar 

  • Hudleston, P. J., 1973, An analysis of single layer folds developed experimentally in viscous media, Tectonophysics 16:189–214.

    Article  Google Scholar 

  • Hudleston, P. J., 1980, The progressive development of inhomogenous shear and crystallographic fabric in glacial ice, J. Struct. Geol. 2:189–196.

    Article  Google Scholar 

  • Hudleston, P. J., 1999, Strain compatibility and shear zones: is there a problem’?, J. Struct. Geol. 21:923–932.

    Article  Google Scholar 

  • Johns, M. K., and Mosher, S., 1996, Physical models of regional fold superposition: the role of competence contrast. J. Struct. Geol. 18:475–492.

    Article  Google Scholar 

  • Jordan, P. G., 1987, The deformational behaviour of bimineralic limestone-halite aggregates, Tectonophysics 135:185–197.

    Article  Google Scholar 

  • LaFrance, B., Clarke, G. L., Collins, W. J. and Williams, I. S., 1995, The emplacement of the Wuluma granite: Melt generation and migration along steeply dipping extensional fractures at the close of the Late Strangways orogenic event, Arunta Block, central Australia, Precambrian Res. 72:43–67.

    Article  Google Scholar 

  • Lister, G. S., and Williams, P. F., 1983, The partitioning of deformation in flowing rock masses, Tectonophysics 92:1–33.

    Article  Google Scholar 

  • Lloyd, G. E., Ferguson, C. C.. and Reading, K., 1982, A stress-transfer model for the development of extension fracture boudinage, J. Struct. Geol. 4:355–372.

    Article  Google Scholar 

  • Martelat, J.-E., Lardeaux, I.-M., Nicollet, C., and Rakotondrazafy, R., 2000. Strain pattern and late Precambrian deformation history in southern Madagascar, Precambrian Res. 102:1–20.

    Article  Google Scholar 

  • Martinod, J., and Davy, P., 1992, Periodic instabilities during compression or extension of the lithosphere, I. Deformation modes from an analytical perturbation model, J. Geophys. Res. 97:1999–2014.

    Article  Google Scholar 

  • McAdoo, D. C., and Sandwell, D. T.. 1985. Folding of oceanic lithosphere. J. Geophys. Res. 90:8563–8569.

    Article  Google Scholar 

  • Means, W. D., 1976, Stress and Strain, Springer-Verlag, New York.

    Book  Google Scholar 

  • Mitra, G., 1979, Ductile deformation zones in Blue Ridge basement rocks and estimation of finite strains, Geol. Soc. Am. Bull. 90:935–951.

    Article  Google Scholar 

  • Mitra, S., 1978, Microscopic deformation mechanisms and flow laws in quartzites within the South Mountain anticline, J. Struct. Geol. 86:129–152.

    Google Scholar 

  • Nickelsen, R. P., 1963, Fold patterns and continuous deformation mehanisms of the central Pennsylvania folded Appalachians, in: Tectonics and Cambro-Ordovician Stratigraphy,Central Appalachians of Pennsylvania. Guidebook, Pittsburgh Geological Society and Appalachian Geological Society. pp. 13–29.

    Google Scholar 

  • Ord, A., 1990, Mechanical controls on dilatant shear zones, in: Deformation Mechanisms,Rheology, and Tectonics. Special Publications 54 (R. J. Knipe and E. II. Rutter, eds.). Geological Society London, pp. 183–192.

    Google Scholar 

  • Passchier, C. W., 1984. The generation of ductile and brittle shear bands in a low-angle mylonite zone, J. Struct. Geol. 6:273–281.

    Article  Google Scholar 

  • Passchier, C. W., 1990, Reconstruction of deformation and flow parameters from deformed vein sets, Tectonophysics 180:182–199.

    Article  Google Scholar 

  • Passchier, C. W., 1997. The fabric attractor. J. Struct. Geol. 19:113–127.

    Article  Google Scholar 

  • Passchier, C. W., and Trouw, R. A. J., 1996, Microtectonics, Springer-Verlag, New York.

    Google Scholar 

  • Platt, J. P., 1984, Secondary cleavages in ductile shear zones, J. Struct. Geol. 6:439–442.

    Article  Google Scholar 

  • Platt, J. P., and Vissers, R. L. M., 1980. Extensional structures in anisotropic rocks, J. Struct. Geol. 2:397–410.

    Article  Google Scholar 

  • Pfiffner, O. A., 1993, The structure of the Helvetic nappes and its relation to the mechanical stratigraphy, J. Struct. Geol. 15:511–521.

    Article  Google Scholar 

  • Price, N. J., and Cosgrove, J. W., 1990. Analysis of Geological Structures, Cambridge University Press, New York.

    Google Scholar 

  • Ramberg, H., 1955, Natural and experimental boudinage and pinch-and-swell structures. J. Geol. 47:512–526.

    Article  Google Scholar 

  • Ramberg, H., 1970, Folding of laterally compressed multilayers in the field of gravity, II, numerical examples, Phys. Earth Planet Int. 4:83–120.

    Article  Google Scholar 

  • Ramsay, J. G., 1967, Folding and Fracturing of Rocks, McGraw-Hill, New York.

    Google Scholar 

  • Reston, T. J., 1988, Evidence for shear zones in the lower crust offshore Britain, Tectonics 7:929–945.

    Article  Google Scholar 

  • Sander, B., 1930, Gefiigekunde der Gesteine, Springer-Verlag, Vienna.

    Book  Google Scholar 

  • Sibson, R. H., 1977, Fault rocks and fault mechanisms. J. Geol Soc. London 133:191–213.

    Article  Google Scholar 

  • Smith, R. B., 1975, Unified theory on the onset of folding, boudinage, and mullion structure, Geol. Soc. A/71. Bull. 86:1601–1609.

    Article  Google Scholar 

  • Smith, R. B., 1977. Formation of folds, boudinage, and mullions in non-Newtonian materials. Geol. Soc. Am. Bull. 88:312–320.

    Article  Google Scholar 

  • Swan, A. R. H., and Sandilands, M.. 1995, Introduction to Geological Data Analysis, Blackwell, Oxford.

    Google Scholar 

  • Sylvester, A., 1988, Strike-slip faults. Geo/. Soc. Am. Bull. 100:1666–1703.

    Article  Google Scholar 

  • Talbot, C. J., 1970. The minimum strain ellipsoid using deformed quartz veins, Tectonophysic,s. 9:47–76.

    Article  Google Scholar 

  • Tapponnier, R., Peltzer, O, Le Dain, A. Y., Armijo, R., and Cobbold, P., 1982, Propagating extrusion tectonics in Asia; new insights from simple experiments with plasticine, Geology 10:611–616.

    Article  Google Scholar 

  • Teyssier, C., 1985, A crustal thrust system in an intracratonic tectonic environment, J. Struct. Geol. 7:689–700.

    Article  Google Scholar 

  • Tikoff, B., and Maxson. J., 2001, Hit-and-run collision model for the Laramide orogeny, western United States, Rocky Mountain Geol. 36:13–35.

    Article  Google Scholar 

  • Tikoff, B., and Teyssier, C., 1994. Strain modelling of displacement-field partitioning in transpressional orogens, J. Struct. Geol. 16:1575–1588.

    Article  Google Scholar 

  • Treagus, S. H., 1993. Flow variations in power-law multilayers: implications for competence contrasts in rocks, J. Struct. Geol. 15:423–434.

    Article  Google Scholar 

  • Treagus, S. H., 1997, Modelling deformation partitioning in folds, in: Evolution of Geological Structures in Micro-to Macro-Scales (S. Sengupta, ed.), Chapman & Hall, London, pp. 341–372.

    Chapter  Google Scholar 

  • Treagus, S. H., and Lan, L., 2000, Pure shear deformation of square objects, and application to geological strain analysis. J. Struct. Geol. 22:105–122.

    Article  Google Scholar 

  • Turner, F. J., and Weiss, L. E., 1963. Structural Analysis of Metamorphic Tectonites, McGraw-Hill, New York.

    Google Scholar 

  • Van Hise, C. R., 1896, Primary and secondary structures and the forces that produced them, Science 3:194–295.

    Google Scholar 

  • Varsek, J. L., and Cook, F. A.. 1994, Three-dimensional crustal structure of the Eastern Cordillera, southwestern Canada and northwestern United States, Geol. Soc. Am. Bull. 16:803–823.

    Article  Google Scholar 

  • Vollmer, F. W., 1988, A computer model of sheath-folds in shear regimes, J. Struct. Geol. 10:753–743.

    Article  Google Scholar 

  • Warren, R. G., 1983, Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia, Nature 305:300–303.

    Article  Google Scholar 

  • Warren, R. G., and Shaw, R. D., 1995, Hermmansburg, Northern Territory 1:250000,Geological Series,Bureau Mineral Resources of Australia Explanatory Notes SF/53 and Map, Canberra, Australia.

    Google Scholar 

  • Wernicke, B., 1992, Cenozoic extensional tectonics of the U. S. Cordillera, in: The Cordilleran Orogen: Coterminus United States (B. C. Burchfiel, P. W. Lipman, and M. L. Zoback, eds.), Geological Society of America, Boulder, pp. 553–582.

    Google Scholar 

  • de Wit, M. J., Bowring, S. A., Ashwal, L. D., Randrianasolo, L. G., Morel, V. P. I., and Rambeloson, R. A.. 2001, Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies, Tectonics 20:1–45.

    Article  Google Scholar 

  • Wojtal, S. F., 2001, The nature and origin of asymmetric arrays of shear surfaces in fault zones, in: The Nature and Tectonic Significance of Fault Zone Weakening (R. E. Holdsworth, R. A. Strachan, J. F. Magloughlin, and R. J. Knipe, eds.), Geological Society of London, pp. 171–193.

    Google Scholar 

  • Ziegler, P. A., Cloetingh, S., and van Wees, J. D., 1995. Dynamics of intra-plate compressional deformation; the Alpine foreland and other examples, Tectonophysics 252:7–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waters, C., Tikoff, B., Goodwin, L.B., Little, T.A. (2003). Ductile Instabilities and Structural Heterogeneity in the Lower Continental Crust. In: Goff, J.A., Holliger, K. (eds) Heterogeneity in the Crust and Upper Mantle. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0103-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0103-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4924-2

  • Online ISBN: 978-1-4615-0103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics