Ductile Instabilities and Structural Heterogeneity in the Lower Continental Crust



Geological observations, particularly of evidence for deformation, are made at scales ranging from 10-8 m to 104 m. Structural geologists use field relations to determine the relative timing of deformation events, and to determine their cumulative effect on structural patterns in the rock. This approach can be used in a qualitative sense when interpreting gradients in bulk accumulated (finite) strain. Working at different scales across strain gradients allows structural geologists to relate the final geometry of structures in naturally deformed rocks to the processes of formation. Using this approach, field studies have documented a remarkable self-similarity of structures and fabrics in ductilely deformed rocks across this 1012 range of scales. This suggests that the processes controlling development of many natural structures are not dependent on the scale of the deforming zone.


Shear Zone Shear Band Structural Heterogeneity Mechanical Instability Finite Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. B., Osmundsen, P. T., and Jolivet, L., 1994, Deep crustal fabrics and a model for the extensional collapse of the Southwest Norwegian Caledonides, J Struct. Geol. 16:1191–1203.CrossRefGoogle Scholar
  2. Arbaret, L., Burg, J.-P., Zeilinger, G., Chaudry, N., Hussain, S., and Dawod, H., 2000, Pre-collisional anastomosing shear zones in the Kohistan Arc, NW Pakistan, in: Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya, Special Publication 170 (M. A. Khan, P. J. Treloar, M. P. Searle, and M. Q. Jan, eds.), Geological Society London, pp. 295–311.Google Scholar
  3. Bell, T. H., 1981, Foliation development; the contribution, geometry and significance of progressive, bulk, inhomogeneous shortening, Tectonophysics 75:273–296.CrossRefGoogle Scholar
  4. Bell, T. H., 1985, Deformation partitioning and porphyroblast rotation in metamorphic rocks; a radical reinterpretation, J. Metam. Geol. 3:109–118.CrossRefGoogle Scholar
  5. Berthé D., Choukroune, P., and Jegouzo, P., 1979, Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South American shear zone, J. Struct. Geol. 1:31–42.CrossRefGoogle Scholar
  6. Biot, M. A., 1965, Mechanics of Incremental Deformations, Wiley, New York.Google Scholar
  7. Blenkinsop, T., 2000, Deformation Microstructures and Mechanisms in Minerals and Rocks, Kluwer, Dordrecht.Google Scholar
  8. Bonnay, M., Collins, W. J., Sawyer, E. W., and Wiebe, R. A., 2000, Mt. Hay: Granite magma transfer through the deep crust or a buried high-level plutonic complex? in: Granite Magma Segregation and Transfer During Compressional Deformation in the Deep Crust? Proterozoic Arunta Inlier, Central Australia, Field Trip Guide FA4 (W. J. Collins, ed.), Geological Society of Australia Incorporated, pp. 8–46.Google Scholar
  9. Bons, P.D., 1993, Experimental deformation of polyphase rock analogues, Geologica Ultrajectina, 110:1–207. Google Scholar
  10. Bouchez, J. L., 1997, Granite is never isotropic: An introduction of AMS studies of granitic rocks, in: Granite: From Segregation of Melt to Emplacement Fabrics, Petrology and Structural Geology Series 8 (J. L. Bouchez, D. H. W. Hutton, and W. E. Stephens, eds.), Kluwer, Dordrecht.Google Scholar
  11. Boyer, S. E., 1984, Origin and significance of compositional layering in Late Precambrian sediments, Blue Ridge Province, North Carolina, USA, J. Struct. Geol. 6:121–133.CrossRefGoogle Scholar
  12. Brace, W. F., and Kohlstedt, D. L., 1980. Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res. 85:6248–6252.CrossRefGoogle Scholar
  13. Burg, J. P., 1999, Ductile structures and instabilities; their implication for Variscan tectonics in the Ardennes, Tectonophysics 309:1–25.CrossRefGoogle Scholar
  14. Burg, J. P., and Podladchikov, Y.. 1999, Lithospheric scale folding: Numerical modelling and application to the Himalayan syntaxes, Int. J. Earth Sci. 88:190–200.CrossRefGoogle Scholar
  15. Burg, J. P., Iglesias, M., Laurent, P., Matte, P., and Ribeiro, A., 1981, Variscan intracontinental deformation; the Coimbra-Cordoba shear zone (SW Iberian Peninsula), Tectonophysics 78:161–177.CrossRefGoogle Scholar
  16. Burg, J. P., Davy, P., and Martinod, J., 1994, Shortening of analogue models of the continental lithosphere; new hypothesis for the formation of the Tibetan plateau, Tectonics 13:475–483.CrossRefGoogle Scholar
  17. Casey, M., Dietrich, D., and Ramsay, J.G., 1983, Methods for determining deformation history for chocolate tablet boudinage with fibrous crystals. Tectonophysics 92:211–239.CrossRefGoogle Scholar
  18. Choukroune, P., and Gapais, C., 1983, Strain pattern in the Aar Granite (Central Alps); orthogneiss developed by bulk inhomogeneous flattening,’ Struct. Geol. 5:411–418.CrossRefGoogle Scholar
  19. Christensen, N. L., and Mooney, W. D., 1995, Seismic velocity structure and composition of the continental crust; a global view. J. Geophys. Res. 100:9761–9788.CrossRefGoogle Scholar
  20. Cloetingh, S., 1988, Intraplate stresses; a tectonic cause for third-order cycles in apparent sea level? Society of Economic Paleontologists and Mineralogists, Special Publication 42, pp. 19–29.Google Scholar
  21. Cloos, E., 1947, Boudinage, EOS 28:626–632.Google Scholar
  22. Cobbold, P. R., and Quinquis, H., 1980, Development of sheath folds in shear regimes, J. Struct. Geol. 2:119–126.CrossRefGoogle Scholar
  23. Cobbold, P. R., Cosgrove, J. W.. and Summers, J. M., 1971, Development of internal structures in deformed anisotropic rocks, Tectonophysics 112:23–53.CrossRefGoogle Scholar
  24. Collins, W. J., 2000, Introduction to the Arunta Inlier. in: Granite Magma Segregation and Transfer During Compressional Deformation in the Deep Crust? Proterozoic Arunta Inlier, Central Australia, Field Trip Guide FA4 (W. J. Collins, ed.), Geological Society of Australia Incorporated, pp. 1–7.Google Scholar
  25. Collins, W. J., and Shaw, R. D., 1995. Geochronological constraints on orogenic events in the Arunta Inlier: A review, Precambrian Res. 71:315–346.CrossRefGoogle Scholar
  26. Cosgrove, J. W., 1997. The influence of mechanical anisotropy on the behavior of the lower crust, Tectonophysics 280:1–14.CrossRefGoogle Scholar
  27. Davis, G. H., 1999, Structural Geology of the Colorado Plateau Region of Southern Utah, with Special Emphasis on Deformation Bands, Special Paper 342, Geological Society of America, Boulder.Google Scholar
  28. Davis, G. H., and Hardy, J Jr., 1981, The Eagle Pass detachment, southeastern Arizona; product of mid-Miocene listric(?) normal faulting in the southern Basin and Range, Geol. Soc. Am. Bull. 92:1749–1762.CrossRefGoogle Scholar
  29. Davy, P.,and Cobbold, P. R., 1991, Experiments on shortening of a 4-layer model of the continental lithosphere. Tectonophysics 188:1–25.CrossRefGoogle Scholar
  30. Dennis, J. G. (ed.), 1967. International Tectonic Dictionary: English Terminology, Memoir 7, International Geological Congress, American Association of Petroleum Geologists, Tulsa.Google Scholar
  31. Dutruge, G., and Burg, J. P., 1997, Strain localisation in an orthogneiss laccolith (the Pinet Massif, Aveyron, southern France), Tectonophysics 280:47–60.CrossRefGoogle Scholar
  32. Dutruge, G., Burg, J. P., and Lapierre, J., 1995, Shear strain analysis and periodicity within shear gradients of metagranite shear zones, J. Struct. Geol. 17:819–830.CrossRefGoogle Scholar
  33. Fossen, H., Tikoff, B., and Teyssier, C.. 1994, Strain modeling of transpressional and transtensional deformation, Norsk Geol. Tidsskrift 74:134–145.Google Scholar
  34. Gapais, D., Bale, P., Choukroune, P., Cobbold, P. R., Mahjoub, Y., and Marquer, D., 1987, Bulk kinematics from shear zone patterns: some field examples, J. Struct. Geol. 9:635–646.CrossRefGoogle Scholar
  35. Ghosh, S. K, and Ramberg, H., 1976, Reorientation of inclusions by combination of pure shear and simple shear, Tectonophysics 34:1–70.CrossRefGoogle Scholar
  36. Glikson, A.Y., 1984, Granulite-Gneiss Terranes of the Southwestern Amnia Block, Central Australia.’ Glen Helen, Narwietooma, and Anburla 1:100,000 Sheet Areas, Bureau of Mineral Resources, Canberra, Australia, Record 1984/22.Google Scholar
  37. Goodwin, L. B., and Tikoff, B., 2002, Competency contrast, kinematics, and the development of foliations and lineations in the crust, J. Struct. Geol., in press.Google Scholar
  38. Goscombe, B., 1992, Intense noncoaxial shear and the development of mega-scale sheath folds in the Arunta block, central Australia, J. Struct. Geol. 13:299–318.CrossRefGoogle Scholar
  39. Hanmer, S., 2000, Matrix mosaics, brittle deformation, and elongate porphyroclasts: granulite facies microstructures in the Striding-Athabasca mylonite zone, western Canada, J. Struct. Geol. 22:947–967.CrossRefGoogle Scholar
  40. Hanmer, S., and Passchier, C., 1991, Shear-Sense Indicators; A Review, Geological Survey of Canada Paper 90–17, Ottawa.CrossRefGoogle Scholar
  41. Hatcher, R. D., Thomas, W. A., Viele, G. W. (eds.). 1989, The Appalachian-Ouichita Orogen in the United States: Decade of North American Geology, Geological Society of America, Boulder.Google Scholar
  42. Hippertt, J., 1999, Are S-C structures, duplexes and conjugate shear zones different manifestations of the same scale-invariant phenomenon?, J. Struct. Geol. 21:975–984.CrossRefGoogle Scholar
  43. Hobbs, B. E., Means, W. D., and Williams, P. F.. 1976, An Outline of Structural Geology, Wiley, New York.Google Scholar
  44. Hobbs, B. E., Milhlhaus, H. B., and Ord, A., 1990, Instability. softening. and localization of deformation, in: Deformation Mechanisms, Rheology, and Tectonics. Special Publication 54 (R. J. Knipe and E. H. Rutter. eds.), Geological Society London, pp. 143–165.Google Scholar
  45. Hudleston, P. J., 1973, An analysis of single layer folds developed experimentally in viscous media, Tectonophysics 16:189–214.CrossRefGoogle Scholar
  46. Hudleston, P. J., 1980, The progressive development of inhomogenous shear and crystallographic fabric in glacial ice, J. Struct. Geol. 2:189–196.CrossRefGoogle Scholar
  47. Hudleston, P. J., 1999, Strain compatibility and shear zones: is there a problem’?, J. Struct. Geol. 21:923–932.CrossRefGoogle Scholar
  48. Johns, M. K., and Mosher, S., 1996, Physical models of regional fold superposition: the role of competence contrast. J. Struct. Geol. 18:475–492.CrossRefGoogle Scholar
  49. Jordan, P. G., 1987, The deformational behaviour of bimineralic limestone-halite aggregates, Tectonophysics 135:185–197.CrossRefGoogle Scholar
  50. LaFrance, B., Clarke, G. L., Collins, W. J. and Williams, I. S., 1995, The emplacement of the Wuluma granite: Melt generation and migration along steeply dipping extensional fractures at the close of the Late Strangways orogenic event, Arunta Block, central Australia, Precambrian Res. 72:43–67.CrossRefGoogle Scholar
  51. Lister, G. S., and Williams, P. F., 1983, The partitioning of deformation in flowing rock masses, Tectonophysics 92:1–33.CrossRefGoogle Scholar
  52. Lloyd, G. E., Ferguson, C. C.. and Reading, K., 1982, A stress-transfer model for the development of extension fracture boudinage, J. Struct. Geol. 4:355–372.CrossRefGoogle Scholar
  53. Martelat, J.-E., Lardeaux, I.-M., Nicollet, C., and Rakotondrazafy, R., 2000. Strain pattern and late Precambrian deformation history in southern Madagascar, Precambrian Res. 102:1–20.CrossRefGoogle Scholar
  54. Martinod, J., and Davy, P., 1992, Periodic instabilities during compression or extension of the lithosphere, I. Deformation modes from an analytical perturbation model, J. Geophys. Res. 97:1999–2014.CrossRefGoogle Scholar
  55. McAdoo, D. C., and Sandwell, D. T.. 1985. Folding of oceanic lithosphere. J. Geophys. Res. 90:8563–8569.CrossRefGoogle Scholar
  56. Means, W. D., 1976, Stress and Strain, Springer-Verlag, New York.CrossRefGoogle Scholar
  57. Mitra, G., 1979, Ductile deformation zones in Blue Ridge basement rocks and estimation of finite strains, Geol. Soc. Am. Bull. 90:935–951.CrossRefGoogle Scholar
  58. Mitra, S., 1978, Microscopic deformation mechanisms and flow laws in quartzites within the South Mountain anticline, J. Struct. Geol. 86:129–152.Google Scholar
  59. Nickelsen, R. P., 1963, Fold patterns and continuous deformation mehanisms of the central Pennsylvania folded Appalachians, in: Tectonics and Cambro-Ordovician Stratigraphy,Central Appalachians of Pennsylvania. Guidebook, Pittsburgh Geological Society and Appalachian Geological Society. pp. 13–29.Google Scholar
  60. Ord, A., 1990, Mechanical controls on dilatant shear zones, in: Deformation Mechanisms,Rheology, and Tectonics. Special Publications 54 (R. J. Knipe and E. II. Rutter, eds.). Geological Society London, pp. 183–192.Google Scholar
  61. Passchier, C. W., 1984. The generation of ductile and brittle shear bands in a low-angle mylonite zone, J. Struct. Geol. 6:273–281.CrossRefGoogle Scholar
  62. Passchier, C. W., 1990, Reconstruction of deformation and flow parameters from deformed vein sets, Tectonophysics 180:182–199.CrossRefGoogle Scholar
  63. Passchier, C. W., 1997. The fabric attractor. J. Struct. Geol. 19:113–127.CrossRefGoogle Scholar
  64. Passchier, C. W., and Trouw, R. A. J., 1996, Microtectonics, Springer-Verlag, New York.Google Scholar
  65. Platt, J. P., 1984, Secondary cleavages in ductile shear zones, J. Struct. Geol. 6:439–442.CrossRefGoogle Scholar
  66. Platt, J. P., and Vissers, R. L. M., 1980. Extensional structures in anisotropic rocks, J. Struct. Geol. 2:397–410.CrossRefGoogle Scholar
  67. Pfiffner, O. A., 1993, The structure of the Helvetic nappes and its relation to the mechanical stratigraphy, J. Struct. Geol. 15:511–521.CrossRefGoogle Scholar
  68. Price, N. J., and Cosgrove, J. W., 1990. Analysis of Geological Structures, Cambridge University Press, New York.Google Scholar
  69. Ramberg, H., 1955, Natural and experimental boudinage and pinch-and-swell structures. J. Geol. 47:512–526.CrossRefGoogle Scholar
  70. Ramberg, H., 1970, Folding of laterally compressed multilayers in the field of gravity, II, numerical examples, Phys. Earth Planet Int. 4:83–120.CrossRefGoogle Scholar
  71. Ramsay, J. G., 1967, Folding and Fracturing of Rocks, McGraw-Hill, New York.Google Scholar
  72. Reston, T. J., 1988, Evidence for shear zones in the lower crust offshore Britain, Tectonics 7:929–945.CrossRefGoogle Scholar
  73. Sander, B., 1930, Gefiigekunde der Gesteine, Springer-Verlag, Vienna.CrossRefGoogle Scholar
  74. Sibson, R. H., 1977, Fault rocks and fault mechanisms. J. Geol Soc. London 133:191–213.CrossRefGoogle Scholar
  75. Smith, R. B., 1975, Unified theory on the onset of folding, boudinage, and mullion structure, Geol. Soc. A/71. Bull. 86:1601–1609.CrossRefGoogle Scholar
  76. Smith, R. B., 1977. Formation of folds, boudinage, and mullions in non-Newtonian materials. Geol. Soc. Am. Bull. 88:312–320.CrossRefGoogle Scholar
  77. Swan, A. R. H., and Sandilands, M.. 1995, Introduction to Geological Data Analysis, Blackwell, Oxford.Google Scholar
  78. Sylvester, A., 1988, Strike-slip faults. Geo/. Soc. Am. Bull. 100:1666–1703.CrossRefGoogle Scholar
  79. Talbot, C. J., 1970. The minimum strain ellipsoid using deformed quartz veins, Tectonophysic,s. 9:47–76.CrossRefGoogle Scholar
  80. Tapponnier, R., Peltzer, O, Le Dain, A. Y., Armijo, R., and Cobbold, P., 1982, Propagating extrusion tectonics in Asia; new insights from simple experiments with plasticine, Geology 10:611–616.CrossRefGoogle Scholar
  81. Teyssier, C., 1985, A crustal thrust system in an intracratonic tectonic environment, J. Struct. Geol. 7:689–700.CrossRefGoogle Scholar
  82. Tikoff, B., and Maxson. J., 2001, Hit-and-run collision model for the Laramide orogeny, western United States, Rocky Mountain Geol. 36:13–35.CrossRefGoogle Scholar
  83. Tikoff, B., and Teyssier, C., 1994. Strain modelling of displacement-field partitioning in transpressional orogens, J. Struct. Geol. 16:1575–1588.CrossRefGoogle Scholar
  84. Treagus, S. H., 1993. Flow variations in power-law multilayers: implications for competence contrasts in rocks, J. Struct. Geol. 15:423–434.CrossRefGoogle Scholar
  85. Treagus, S. H., 1997, Modelling deformation partitioning in folds, in: Evolution of Geological Structures in Micro-to Macro-Scales (S. Sengupta, ed.), Chapman & Hall, London, pp. 341–372.CrossRefGoogle Scholar
  86. Treagus, S. H., and Lan, L., 2000, Pure shear deformation of square objects, and application to geological strain analysis. J. Struct. Geol. 22:105–122.CrossRefGoogle Scholar
  87. Turner, F. J., and Weiss, L. E., 1963. Structural Analysis of Metamorphic Tectonites, McGraw-Hill, New York.Google Scholar
  88. Van Hise, C. R., 1896, Primary and secondary structures and the forces that produced them, Science 3:194–295.Google Scholar
  89. Varsek, J. L., and Cook, F. A.. 1994, Three-dimensional crustal structure of the Eastern Cordillera, southwestern Canada and northwestern United States, Geol. Soc. Am. Bull. 16:803–823.CrossRefGoogle Scholar
  90. Vollmer, F. W., 1988, A computer model of sheath-folds in shear regimes, J. Struct. Geol. 10:753–743.CrossRefGoogle Scholar
  91. Warren, R. G., 1983, Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia, Nature 305:300–303.CrossRefGoogle Scholar
  92. Warren, R. G., and Shaw, R. D., 1995, Hermmansburg, Northern Territory 1:250000,Geological Series,Bureau Mineral Resources of Australia Explanatory Notes SF/53 and Map, Canberra, Australia.Google Scholar
  93. Wernicke, B., 1992, Cenozoic extensional tectonics of the U. S. Cordillera, in: The Cordilleran Orogen: Coterminus United States (B. C. Burchfiel, P. W. Lipman, and M. L. Zoback, eds.), Geological Society of America, Boulder, pp. 553–582.Google Scholar
  94. de Wit, M. J., Bowring, S. A., Ashwal, L. D., Randrianasolo, L. G., Morel, V. P. I., and Rambeloson, R. A.. 2001, Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies, Tectonics 20:1–45.CrossRefGoogle Scholar
  95. Wojtal, S. F., 2001, The nature and origin of asymmetric arrays of shear surfaces in fault zones, in: The Nature and Tectonic Significance of Fault Zone Weakening (R. E. Holdsworth, R. A. Strachan, J. F. Magloughlin, and R. J. Knipe, eds.), Geological Society of London, pp. 171–193.Google Scholar
  96. Ziegler, P. A., Cloetingh, S., and van Wees, J. D., 1995. Dynamics of intra-plate compressional deformation; the Alpine foreland and other examples, Tectonophysics 252:7–59.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsUniversity of WisconsinMadisonUSA
  2. 2.Department of Earth and Environmental ScienceNew Mexico Tech.SocorroUSA
  3. 3.School of Earth SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations