Advertisement

The Nature of Crustal Seismic Heterogeneity: A Case Study From the Grenville Province

  • Charles A. Hurich

Abstract

Over the range of scales for which most seismic reflection data contain information, lithologic variation is one of the major sources of heterogeneity in the crystalline crust. This is particularly true at depths greater than ~10 to 15 km where most of the fractures and microfractures that contribute to upper crustal heterogeneity are closed. The spatial distribution of lithologic heterogeneity is a function of the range of magmatic and tectonic processes that progressively distribute and redistribute the various lithologic components of the crust (the “tectonic roulette” of Fountain and Salisbury, 1981). Although the seismic reflection wavefield responds indirectly to lithologic variation, it is directly responsive to fluctuations of acoustic impedance that are more closely coupled to mineralogy than lithology. Accordingly, pressure and temperature variations that modify mineralogy, but not bulk chemistry, combine with lithologic variation to play both static and dynamic roles in defining the heterogeneity of the Earth’s crust.

Keywords

Shear Zone Reflection Coefficient Seismic Data Seismic Reflection Acoustic Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austrheim, H., 1987, Eclogitization of lower crustal granulites by fluid migration through shear zones, Earth Planet. Sci. Lett. 81:221–232.CrossRefGoogle Scholar
  2. Burke, M. M., and Fountain, D. M., 1990, Seismic properties of rocks from an exposure of extended continental crust; new laboratory measurements from the Ivrea Zone, Tectonophysics 182:119–146.CrossRefGoogle Scholar
  3. Eaton, D. W., Hynes, A., Indares, A., and Rivers, T., 1995, Seismic images of eclogites, crustal-scale extension, and Moho relief in the eastern Grenville province, Quebec, Geology 23:855–858.CrossRefGoogle Scholar
  4. Emmerich, H., Zwielich, J., and Müller, G., 1993, Migration of synthetic seismograms for crustal structures with random heterogeneities, Geophys. J. Int 113:225–238.CrossRefGoogle Scholar
  5. Fountain, D. M., and Salisbury, M. H., 1981, Exposed cross-sections through the continental crust: Implications for crustal structure, petrology and evolution, Earth Planet. Sci. Lett. 56:263–277.CrossRefGoogle Scholar
  6. Fountain, D. M., Boundy, T. M., Austrheim, H., and Rey, P., 1994, Eclogite facies shear zones - deep crustal reflectors?, Tectonophysics 232:411–424.CrossRefGoogle Scholar
  7. Gibson, B. S., and Levander, A. R., 1988, Modeling and processing of scattered waves in seismic reflection surveys, Geophysics 54:466–478.Google Scholar
  8. Gibson, B. S., and Levander, A. R., 1990, Apparent layering in common-midpoint stacked images of two-dimensionally heterogeneous targets, Geophysics 55:1466–1477.Google Scholar
  9. Goff, J. A., and Jordan, T. H., 1988, Stochastic modeling of seafloor morphology: Inversion of Sea Beam data for second-order statistics, J. Geophys. Res. 93:13,589–13,608.CrossRefGoogle Scholar
  10. Goff, J. A., and Levander, A., 1996, Incorporating “sinuous connectivity” into stochastic models of crustal heterogeneity: Examples from the Lewisian gneiss complex, Scotland, the Franciscan formation, California, and the Hafafit gneiss complex, Egypt, J. Geophys. Res. 101:8489–8501.CrossRefGoogle Scholar
  11. Goff, J. A., Holliger, K., and Levander, A., 1994, Modal fields: A new method for characterization of random seismic velocity heterogeneity, Geophys. Res. Lett. 21:493–496.CrossRefGoogle Scholar
  12. Holliger, K., 1996, Upper crustal seismic velocity heterogeneity as derived from a variety of P-wave sonic logs, Geophys. J. Int. 125:813–829.CrossRefGoogle Scholar
  13. Holliger, K., and Levander, A. R., 1992, A stochastic view of lower crustal fabric based on evidence from the Ivrea Zone, Geophys. Res. Lett. 19:1153–1156.CrossRefGoogle Scholar
  14. Holliger, K, Levander, A. R., and Goff, J. A., 1993, Stochastic modeling of the reflective lower crust: petrophysical and geological evidence from the Ivrea Zone (Northern Italy), J. Geophys. Res. 98:11,967–11,980.CrossRefGoogle Scholar
  15. Holliger, K., and Levander, A.R., 1994a, Structure and seismic response of extended continental crust: stochastic analysis of the Strona-Ceneri and Ivrea Zones, Italy, Geology 22:79–82.CrossRefGoogle Scholar
  16. Holliger, K., and Levander, A. R., 1994b, Seismic structure of gneissic/granitic upper crust: geological and petrophysical evidence from the Stona-Ceneri Zone (northern Italy) and implications for crustal seismic exploration, Geophys. J. Int. 119:497–510.CrossRefGoogle Scholar
  17. Hurich, C. A., 1996, Statistical description of seismic reflection wave fields: A step towards quantitative interpretation of deep seismic reflection profiles, Geophys. J. Int. 125:719–728.CrossRefGoogle Scholar
  18. Hurich, C. A., and Kocurko, A., 2000, Statistical approaches to interpretation of seismic reflection data, Tectonophysics 329:243–258.CrossRefGoogle Scholar
  19. Hurich, C. A., Deemer, S. J., Indares, A., and Salisbury, M., 2001, Compositional and metamorphic controls on velocity and reflectivity in the continental crust: An example from the Grenville Province of eastern Québec, J. Geophys. Res. 106:665–682.CrossRefGoogle Scholar
  20. Hynes, A., and Eaton, D., 1999, Lateral ramps as an aid to the unroofing of deep-crustal rocks: Seismic evidence from the Grenville province, Tectonics 18:343–360.CrossRefGoogle Scholar
  21. Hynes, A., Indares, A., Rivers, T., and Gobeil, A., 2000, Lithoprobe line 55: Integration of out-of-plane seismic results with surface structure, metamorphism, and geochronology, and the tectonic evolution of the eastern Grenville Province, Can. J. Earth Sci. 37:341–358.CrossRefGoogle Scholar
  22. Indares, A., 1997, Grt-Ky clinopyroxenites and Grt-Ky restites from the Manicouagan Imbricate Zone: An unusual case of high P-T metamorphism in the Grenville Province, Can. Mineral. 35:1161–1171.Google Scholar
  23. Indares, A., Dunning, G., Cox, R., Gale, D., and Connelly, J., 1998, High-pressure, high-temperature rocks from the base of thick continental crust: Geology and age constraints from the Manicouagan Imbricate Zone, eastern Grenville Province, Tectonics 17:426–440.CrossRefGoogle Scholar
  24. Indares, A., Dunning, G., and Coc, R., 2000, Tectono-thermal evolution of deep crust in a Mesoproterozoic continental collision setting: The Manicouagan example, Canadian J. Earth Sci. 37:325–340.CrossRefGoogle Scholar
  25. Levander, A., England, R. W., Smith, S. K., Hobbs, R. W., Goff, J. A., and Holliger, K., 1994, Stochastic characterization and seismic response of upper and middle crustal rocks based on the Lewisian gneiss complex, Scotland, Geophys. J. Int. 119:234–259.CrossRefGoogle Scholar
  26. Pullammamappallil, S., Levander, A., and Larkin, S., 1997, Estimation of crustal stochastic parameters from seismic exploration data, J. Geophys. Res. 102:15,269–15,286.CrossRefGoogle Scholar
  27. Rivers, T., 1997, Lithotectonic elements of the Grenville Province: Review and tectonic implications, Precambrian Res. 86:117–154.CrossRefGoogle Scholar
  28. Vasudevan, K., and Cook, F. A., 1998, Skeletons and fractals - a statistical approach to deep crustal seismic data processing and interpretation, Tectonophysics 286:93–109.CrossRefGoogle Scholar
  29. Warner, M., 1990, Absolute reflection coefficients from deep seismic reflections, Tectonophysics 173:15–23.CrossRefGoogle Scholar
  30. Wu, R-S., Spatial coherences of seismic data and the application to characterization of small-scale heterogeneities, this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Charles A. Hurich
    • 1
  1. 1.Earth Sciences DepartmentMemorial University of NewfoundlandSt. JohnsCanada

Personalised recommendations