Heterogeneity of the Uppermost Mantle Inferred From Controlled-Source Seismology



Seismic investigations of the Earth’s velocity structure have revealed a rather complex image of the Earth, exemplified by velocity perturbations of several percent over scales ranging from centimeters to thousands of kilometers (Figure 11.1). Reflection seismic data often show a “layered”, reflective lower crust (Mooney and Meissner, 1992) with velocity inhomogeneities up to 10% (e.g., Sandmeier and Wenzel, 1986; 1990; Levander and Holliger, 1992). The spatial distribution of lower crustal impedance fluctuations seems to obey fractal scaling laws over a scale range of at least 0.1–1 km (Hurich, 1996; Hurich, this volume). At the crust/mantle boundary (Moho) the scale of heterogeneity seems to change rapidly.


Lower Crust Velocity Fluctuation Velocity Structure Synthetic Seismogram Coda Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., 1969, Analysis of the seismic coda of local earthquakes as scattered waves, J. Geophys. Res. 74:615–631.CrossRefGoogle Scholar
  2. Aki, K., and Chouet, B., 1975, Origin of coda waves: sources, attenuation, and scattering effects, J. Geophys. Res. 80:3322–3342.CrossRefGoogle Scholar
  3. Aki K., and Richards, P. G., 1980, Quantitative Seismology - Theory and Methods, Freeman, San Francisco.Google Scholar
  4. Benz, H. M., Unger, J. D., Leith, W. S., Mooney, W. D., Solodilov, L., Egorkin, A. V., and Ryaboy, V. Z., 1992, Deep seismic sounding in Northern Eurasia, EOS 73:297.CrossRefGoogle Scholar
  5. Berteussen, K. A., Christofferson, A., Husebye, E. S, and Dahle, A., 1975, Wave scattering theory in analysis of P wave anomalies at NORSAR and LASA, Geophys. J. R. Astron. Soc. 42:403–417.CrossRefGoogle Scholar
  6. Blundell, D., Freeman, R., and Mueller, S., 1992, A Continent Revealed - The European Geotraverse,Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  7. Brandsdóttir B., and Menke, W. H., 1988, Measurements of coda buildup and decay rates of Western Pacific P, P 0, and S 0 phases and their relevance to lithospheric scattering, J. Geophys. Res. 93:10,541–10,559.CrossRefGoogle Scholar
  8. Caloi, P., 1954, L’astenosfera come canale-guida dall’energia sismica (in Italian), Ann. Geof 7:491–501.Google Scholar
  9. Chernov, L. A., 1960, Wave Propagation in a Random Medium, McGraw-Hill, New York.Google Scholar
  10. Chinn, D. S., Isaaks, B. L., and Barazangi, M., 1980, High-frequency seismic wave propagation in western South America along the continental margin, in the Nazca plate and across the Altiplano, Geophys. J. R. Astron. Soc. 60:209–244.CrossRefGoogle Scholar
  11. Diaz, J., Gallart, J., Cordoba, D., Senos, L., Matias, L., Surifiach, E., Hirn, A., Maguire, P., and the ILIHA DSS Group, 1993, A deep seismic sounding investigation of lithospheric heterogeneity and anisotropy beneath the Iberian peninsula, Tectonophysics 221:35–51.CrossRefGoogle Scholar
  12. Enderle, U, Tittgemeyer, M., Itzin, M., Prodehl, P., and Fuchs, K., 1997, Scales of structure in the lithosphere - Images of processes, Tectonophysics 275:165–198.CrossRefGoogle Scholar
  13. Faber, S., 1978, Refraktionsseismische Untersuchung der Lithosphere unter den Britischen Inseln, PhD thesis, Karlsruhe University, Karlsruhe.Google Scholar
  14. Faber, S., and Bamford, D., 1979, Lithospheric structural contrasts across the Caledonides of Northern Britain, Tectonophysics 56:17–30.CrossRefGoogle Scholar
  15. Fowler, C. M. R., 1993, The Solid Earth: An Introduction to Global Geophysics,2nd Edition, Cambridge University Press, Cambridge.Google Scholar
  16. Fuchs, K., 1983, Recently formed elastic anisotropy and petrological models for the continental subcrustal lithosphere, Phys. Earth Planet. Inter. 31:93–118.CrossRefGoogle Scholar
  17. Fuchs, K., and Muller, G., 1971, Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astron. Soc. 23:417–433.CrossRefGoogle Scholar
  18. Fuchs, K., Tittgemeyer, M., Ryberg, T., and Wenzel, F., 2002, Global significance of a sub-Moho boundary layer (SMBL) deduced from high-resolution seismic observations, International Geology Review, in press.Google Scholar
  19. Gettrust, J. F., and Frazer, L. N., 1981, A computer model study of the propagation of long-range P n phase, Geophys. Res. Lett. 8:749–752.CrossRefGoogle Scholar
  20. Goes, S., Govers, R., and Vacher, P., 2000, Shallow mantle temperatures under Europe from P and S wave tomography, J. Geophys. Res. 105:11,153–11,169.CrossRefGoogle Scholar
  21. Gorman, A. R., and Clowes, R. M., 1999, Wave-field tau-p analysis for 2-D velocity models: Application to Western North American lithosphere, Geophys. Res. Lett. 26:2323–2326.CrossRefGoogle Scholar
  22. Grand, S. P., and Helmberger, D. V., 1984a, Upper mantle shear wave structure beneath the Northwest Atlantic ocean, J. Geophys. Res. 89:11,465–11,475.CrossRefGoogle Scholar
  23. Grand, S. P., and Helmberger, D. V., 1984b, Upper mantle shear wave structure of North America, Geophys. J. R. Astron. Soc. 76:399–438.CrossRefGoogle Scholar
  24. Green, P. E., Frosch, R. A., and Romney, C. F., 1965, Principles of an experimental large aperture seismic array (LASA), Proc. IEEE 53:1821–1833.CrossRefGoogle Scholar
  25. Guggisberg, B., Kaminski, W., and Prodehl, C., 1991, Crustal structure of the Fennoscandian Shield: A traveltime interpretation of the long-range FENNOLORA seismic refraction profile, Tectonophysics 195:105–137.CrossRefGoogle Scholar
  26. Helffrich, G. R., and Wood, B. J., 2001, The Earth’s mantle, Nature 412:501–505.CrossRefGoogle Scholar
  27. Henstock, T., Levander, A., and DeepProbe working group, 1998, Probing the Archean and Proterozoic lithosphere of Western North America, GSA Today 8:1–5 & 16–17.Google Scholar
  28. Herraiz, M., and Espinosa, A. F., 1987, Coda waves: A review, Pure Appl. Geophys. 125:499–577.CrossRefGoogle Scholar
  29. Hirn, A., Steinmetz, L., Kind, R., and Fuchs, K., 1973, Long range profiles in Western Europe—II. Fine structure of the lower lithosphere in France (southern Bretagne), Z. Geophys. 39:363–384.Google Scholar
  30. Holliger, K., Levander, A., Carbonell, R., and Hobbs, R., 1994, Some attributes of wavefields scattered from Ivrea-type lower crust, Tectonophysics 119:497–510.Google Scholar
  31. Hurich, C. A., 1996, Statistical description of seismic reflection wavefields: A step towards quantitative interpretation of deep seismic reflection profiles, Geophys. J. Int. 125:719–728.CrossRefGoogle Scholar
  32. Hurich, Nature and scales of crustal heterogeneity: A case study from the Grenville Province, this volume.Google Scholar
  33. Iyer, H., and Hirahara, K., 1993, Seismic Tomography, Chapman and Hall, London.Google Scholar
  34. Jacob, A. W. B., 1974, Dispersed shots at optimum depth - An efficient seismic source for lithospheric studies, J. Geophys. 41:63–70.Google Scholar
  35. Kadinsky-Cade, K., Barazangi, M., and Oliver, J., 1981, Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian platforms, J. Geophys. Res. 86 :9377–9396.CrossRefGoogle Scholar
  36. Kennett, B. L. N., and Engdahl, E. R., 1991, Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 105:429–465.CrossRefGoogle Scholar
  37. Kennett, B. L. N., and van der Hilst, R. D., 1998, Seismic structure of the mantle: From subduction zone to craton, in: The Earth’s Mantle: Composition, Structure, and Evolution (I. Jackson, ed.), Cambridge University Press, Cambridge, pp. 381–404.Google Scholar
  38. Lay, T., and Wallace, T. C., 1995, Modern Global Seismology, Academic Press, San Diego.Google Scholar
  39. Lehmann, I., 1964, On the velocity of P in upper mantle, Bull. Seismol. Soc. Am. 54:1097–1103.Google Scholar
  40. Levander, A. R., and Holliger, K., 1992, Small-scale heterogeneity and large-scale velocity structure of the continental crust, J. Geophys. Res. 97:8797–8804.CrossRefGoogle Scholar
  41. Linehan, D., 1940, Earthquakes in the West Indian region, EOS 21:229–232.Google Scholar
  42. Mallick, S., and Frazer, L. N., 1990, P 0 /S 0 synthetics for a variety of oceanic models and their implications for the structure of the oceanic lithosphere, Geophys. J. Int. 100:235–253.CrossRefGoogle Scholar
  43. Mantovani, E., Schwab, F., Liao, H., and Knopoff, L., 1977, Teleseismic S n: A guided wave in the mantle, Geophys. J. R. Astron. Soc. 51:709–726.CrossRefGoogle Scholar
  44. Mechie, J., Egorkin, A. V., Solodilov, L., Fuchs, K., Lorenz, F., and Wenzel, F., 1997, Major features of the upper mantle velocity structure beneath northern Eurasia from long-range seismic recordings of Peaceful Nuclear Explosions, in: Upper Mantle Heterogeneities from Active and Passive Seismology (K. Fuchs, ed.), Kluwer, Dordrecht, pp. 33–50.Google Scholar
  45. Menke, W. H., and Richards, P. G., 1980, Crust-mantle whispering gallery phases: A deterministic model of teleseismic P n wave propagation, J. Geophys. Res. 85:5416–5422.CrossRefGoogle Scholar
  46. Menke, W. H., and Richards, P. G., 1983, The horizontal propagation of P waves through scattering media: Analog model studies relevant to long-range P n propagation, Bull. Seismol. Soc. Am. 73:125–142.Google Scholar
  47. Molnar, P., and Oliver, J., 1969, Lateral variations of attenuation in the upper mantle and discontinuities in the lithosphere, J. Geophys. Res. 74:2648–2682.CrossRefGoogle Scholar
  48. Mooney, W. D., and Meissner, R., 1992, Multi-generic origin of crustal reflectivity: A review of seismic reflection profiling of the continental lower crust and Moho, in: Continental Lower Crust (D. M. Fountain, R. Arculus, and K. W. Kay, eds.), Elsevier, Amsterdam, pp. 179–199.Google Scholar
  49. Ni, J. F., and Barazangi, M., 1983, High-frequency seismic wave propagation beneath the Indian shield, Himalayan, Tibetan plateau and the surrounding regions: High uppermost mantle velocities and efficient S n propagation beneath Tibet, Geophys. J. R. Astron. Soc. 72:665–689.CrossRefGoogle Scholar
  50. Nielsen, L., Thybo, H., and Solodilov, L., 1999, Seismic tomographic inversion of Russian PNE data along profile Kraton, Geophys. Res. Lett. 26:3413–3416.CrossRefGoogle Scholar
  51. Nielsen, L., Thybo, H., and Egorkin, A. V., 2001, Constraints on reflective bodies below the 8 degrees discontinuity from reflectivity modelling, Geophys. J. Int. 145:759–770.CrossRefGoogle Scholar
  52. Olson, P., Yuen, D. A., and Balsinger, D., 1984, Convective mixing and the time structure of mantle heterogeneity, Phys. Earth Planet. Inter. 36:291–304.CrossRefGoogle Scholar
  53. Rapine, R. R., Ni, J. F., and Hearn, T. M., 1997, Regional wave propagation in China and its surrounding regions, Bull. Seismol. Soc. Am. 87:1622–1636.Google Scholar
  54. Ritter, J. R. R., and Rothert, E., 2000, Variations of the lithospheric seismic scattering strength below the Massif Central, France, and the Frankonian Jura, SE Germany, Tectonophysics,328:297–305.CrossRefGoogle Scholar
  55. Rodgers, A. J., Ni, J. F., and Hearn, T. M., 1997, Propagation characteristics of short-period S n and L g,in the middle East, Bull. Seismol. Soc. Am. 87:396–413.Google Scholar
  56. Rothert, E., and Ritter, J. R. R., 2000, Small-scale heterogeneities below the Grafenberg array, Germany, from seismic wavefield fluctuations of Hindu Kush events, Geophys. J. Int 140:175–184.CrossRefGoogle Scholar
  57. Ryberg, T., 2000, The Structure of Earth’s Upper Mantle and Transition Zone (in German), Habilitation thesis, University of Potsdam, Potsdam.Google Scholar
  58. Ryberg, T., and Wenzel, F., 1999, High-frequency wave propagation in the uppermost mantle, J Geophys. Res. 104:10,655–10,666.CrossRefGoogle Scholar
  59. Ryberg, T., Fuchs, K., Egorkin, A. V., and Solodilov, L., 1995, Observation of high-frequency teleseismic P n waves on the long-range Quartz profile across Northern Eurasia, J. Geophys. Res. 100:18,151–18,163.CrossRefGoogle Scholar
  60. Ryberg, T., Tittgemeyer, M., and Wenzel, F., 2000a, Finite difference modelling of P wave scattering in the upper mantle, Geophys. J. Int. 141:787–800.CrossRefGoogle Scholar
  61. Ryberg, T., Tittgemeyer, M., and Wenzel, F., 2000b, Finite difference modelling of elastic wave propagation in the Earth’s uppermost mantle, in: High Performance Computing in Science and Engineering 1999, Transactions of the High Performance Computing Center Stuttgart (HLRS) (E. Krause and W. Jäger, eds.), Springer-Verlag, New York, pp. 3–12.CrossRefGoogle Scholar
  62. Ryberg, T., Tittgemeyer, M., and Wenzel, F., 2001, Finite difference modelling of seismic wave phenomena within the Earth’s upper mantle, in: High Performance Computing in Science and Engineering 2000, Transactions of the High Performance Computing Center Stuttgart (HLRS) (E. Krause and W. Jäger, eds.), Springer-Verlag, New York, pp. 48–56.CrossRefGoogle Scholar
  63. Sandmeier, K.-J., and Wenzel, F., 1986, Synthetic seismograms for a complex model, Geophys. Res. Lett. 13:22–25.CrossRefGoogle Scholar
  64. Sandmeier, K.-J., and Wenzel, F., 1990, Lower crustal petrology from wide-angle P and S wave measurements in the Black Forest, Tectonophysics 173:495–505.CrossRefGoogle Scholar
  65. Sereno, T. J. and Orcutt, J. A., 1985, Synthesis of realistic oceanic P n wave trains, J. Geophys. Res. 90:12,755–12,776.CrossRefGoogle Scholar
  66. Sereno, T. J., and Orcutt, J. A., 1987, Synthetic P n and S n phases and the frequency dependence of Q of oceanic lithosphere, J. Geophys. Res. 92:3541–3566.CrossRefGoogle Scholar
  67. Shapiro, S. A., Schwarz, R., and Gold, N., 1996, The effect of random isotropic inhomogeneities on the phase velocity of seismic waves, Geophys. J. Int 127:783–794.CrossRefGoogle Scholar
  68. Shurbet, D. H., 1962, High-frequency P and S phases, Bull. Seismol. Soc. Am. 52:957–962.Google Scholar
  69. Shurbet, D. H., 1964, The high-frequency S phase and structure in the upper mantle, J. Geophys. Res., 69:2065–2070.CrossRefGoogle Scholar
  70. Stangl, R., 1990, Die Struktur der Lithosphere in Schweden,abgeleitet aus einer gemeinsamen Interpretation der P- und S-Wellen Registrierungen auf dem FENNOLORA-Profil, PhD thesis, Karlsruhe University, Karlsruhe.Google Scholar
  71. Stephens, C., and Isacks, B. L., 1977, Towards an understanding of S n;normal modes of Love waves in an oceanic structure, Bull. Seismol. Soc. Am. 67:69–78.Google Scholar
  72. Sutton, G. H., and Walker, D. A., 1972, Oceanic mantle phases recorded on seismographs in the north western Pacific at distances between 7° and 40°, Bull. Seismol. Soc. Am. 62:631–655.Google Scholar
  73. Thybo, H., and Perchuc, E., 1997, The seismic 8° discontinuity and partial melting in continental mantle, Science,275:1626–1629.CrossRefGoogle Scholar
  74. Tittgemeyer, M., 1999, Scattering of Elastic Waves in the Earth’s Upper Mantle (in German), Logos-Verlag Berlin, Berlin.Google Scholar
  75. Tittgemeyer, M., Wenzel, F., Fuchs, K., and Ryberg, T., 1996, Wave propagation in a multiple-scattering upper mantle - Observations and modelling, Geophys. J. Int., 127:492–502.CrossRefGoogle Scholar
  76. Tittgemeyer, M., Ryberg, T., Fuchs, K., and Wenzel, F., 1997, Observation of teleseismic P n /S n on super long-range seismic profiles in northern Eurasia and their implications for the structure of the lithosphere, in: Upper Mantle Heterogeneities from Active and Passive Seismology (K. Fuchs, ed.), Kluwer, Dordecht, pp. 63–73.Google Scholar
  77. Tittgemeyer, M., Wenzel, F., Ryberg, T., and Fuchs, K., 1999, Scales of heterogeneities in the continental crust and upper mantle, Pure Appl. Geophys. 156:29–52.CrossRefGoogle Scholar
  78. Tittgemeyer, M., Wenzel, F., and Fuchs, K., 2000, On the nature of P n, J. Geophys. Res. 105:16,173–16,180.CrossRefGoogle Scholar
  79. Trampert, J., and Woodhouse, J. H., 1995, Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds, Geophys. J. Int. 122:675–690.CrossRefGoogle Scholar
  80. Van der Hilst, R. D., Widiyantoro, S., and Engdahl, E. R., 1996, Global slab structure from high resolution tomographic imaging, EOS 77:137.Google Scholar
  81. Walker, D. A., 1977, High-frequency P n and S n phases recorded in the western Pacific, J. Geophys. Res. 82:3350–3360.CrossRefGoogle Scholar
  82. Wielandt, E., 1972, Anregung seismischer Wellen durch Unterwasserexplosionen, PhD thesis, University of Karlsruhe, Karlsruhe.Google Scholar
  83. Wu, R. S., and Aki, K., 1988, Introduction: Seismic wave scattering in the three-dimensional heterogeneous Earth, in: Seismic Wave Scattering and Attenuation (R. S. Wu and K. Aki, eds.), Pure Appl. Geophys. 128:1–6.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of NeurologyMax-Planck-Institute of Cognitive NeuroScienceLeipzigGermany
  2. 2.GeoForschungsZentrum PotsdamTelegrafenbergPotsdamGermany
  3. 3.Geophysical InstituteUniversity of KarlsruheKarlsruheGermany

Personalised recommendations