The Heterogeneity of the Crust and its Effect on Seismic Wide-Angle Reflection Fields



During the past 90 years, our conceptual image of the Earth’s crust has gradually evolved from that of a simple one or two layered crust (e.g., Mohorovičić, 1910; Conrad, 1925; Jeffereys, 1926; Hodgson, 1953), to multi-layered crusts (e.g., McCamy and Meyer, 1966; Mueller, 1977; Sandmeier and Wenzel, 1986; Stephenson et al., 1989), to highly complex morphologies with fractal characteristics (e.g., Nikolajev and Tregub, 1970; Mereu and Ojo 1981; Frankel and Clayton, 1986; Levander and Holliger, 1992; Goff and Levander, 1996). This change has occurred as a result of a revolution in both seismic data acquisition technology (e.g., Berry and Mair, 1977; Brown et al., 1980; Meissner, 1986; Mooney and Brocher, 1987) and computational technology (e.g., Fuchs and Muller, 1971; Kelly et al.,1976; McMechan and Mooney, 1980; Červený and Psençik, 1984; White, 1989; Zelt and Smith, 1992). Much of the current information about crustal structure has come from numerous controlled-source seismic refraction and reflection experiments. These have been described in many published works over the past 40 years (e.g., Steinhart and Smith, 1966; Barazangi and Brown, 1986a,b; Mathews and Smith, 1987; Meissner et al.,1991; Klemperer and Mooney, 1998).


Synthetic Seismogram Coda Wave Crustal Model Canadian Shield Record Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., and Chouet, B., 1975, Origin of coda waves: Source, attenuation, and scattering effects, J Geophys. Res, 80:3322–3342.CrossRefGoogle Scholar
  2. Baishali, R., and Mereu, R. F., 1996, Signal enhancement using pattern recognition techniques with application to near-vertical crustal reflection experiments, Geophys. Res. Lett. 23:1849–1852.CrossRefGoogle Scholar
  3. Barazangi, M., and Brown, L., (eds.) 1986a, Reflection Seismology: A Global Perspective,Geodynamics Series 13, American Geophysical Union, Washington.CrossRefGoogle Scholar
  4. Barazangi, M., and Brown, L (eds.) 1986b, Reflection Seismology: The Continental Crust,Geodynamics Series 14, American Geophysical Union, Washington.CrossRefGoogle Scholar
  5. Barnes, A. E., 1994, Moho reflectivity and seismic signal penetration, Tectonophysics 232:299–307.CrossRefGoogle Scholar
  6. Berry, M. J., and Mair, J. A., 1977, The nature of the Earth’s crust in Canada, in: The Nature of the Earth’s Crust in Canada, Geophysical Monograph 20 (J. G. Heacock, G. V. Keller, J. E. Oliver, and G. Simmons, eds.), American Geophysical Union, Washington, pp. 319–348.Google Scholar
  7. Berry, M. J., and Mair, J. A., 1980, Structure of the continental crust: A reconciliation of seismic reflection and refraction studies, in: The Continental Crust and its Mineral Deposits,Special Paper 20, (D. W. Strangeway, ed.), Geological Association of Canada, pp. 195–213Google Scholar
  8. Berry, M. J., and West, G. F., 1966, An interpretation of the first arrival data of the Lake Superior experiment by the time-term method, Bull. Seismol. Soc. Am. 56:141–171.Google Scholar
  9. Berteussen, K. A., Christoffersson, A., Husebye, E. S., and Dahle, A., 1975, Wave scattering theory in analysis of P wave anomalies at NORSAR and LASA, Geophys. J. Royal Astr. Soc. 42:403–417.CrossRefGoogle Scholar
  10. Braile, L. W., and Chiang, C. S., 1986, The continental Mohorovičić discontinuity: Results from near vertical and wide-angle seismic reflection studies, in: Reflection Seismology: A Global Perspective, Geodynamics Series 13 (M. Barazangi and L Brown, eds.), American Geophysical Union, Washington, pp. 257–272.Google Scholar
  11. Brown, L. D., Chapin, C. E., Sanford, A. R., Kaufman, S., and Oliver, J. E., 1980, Deep structure of the Rio Grande Rift from seismic reflection profiling, J. Geophys. Res. 85:4773–4800.CrossRefGoogle Scholar
  12. Červený, V., and Psençik, I., 1984, Gaussian beams in two-dimensionally laterally varying layered structures, Geophys. J Royal Astr. Soc. 78:65–91.CrossRefGoogle Scholar
  13. Chapman, C. H., and Drummond, R., 1982, Body wave seismograms in inhomogeneous media using the Maslov asymptotic theory, Bull. Seismol. Soc. Am. 72:S99–S139.Google Scholar
  14. Christensen, N. I., and Mooney, W. D., 1995, Seismic velocity structure and the composition of the continental crust: A global view, J Geophys. Res. 100:9761–9788.CrossRefGoogle Scholar
  15. Clowes, R. M., Kanasewich, E. R., and Cumming, G., 1968, Deep crustal seismic reflections at near vertical incidence, Geophysics 33:441–451.Google Scholar
  16. Conrad, V., 1925, Laufzeitkurven des Tauernbebens vom 28. November 1923, Mitt. Erdb. Komm. Wien 59:1–23.Google Scholar
  17. Crossley, D. J., and Jensen, O. G., 1989, Fractal velocity models in refraction seismology, Pure Appl. Geophys. 131:61–76.CrossRefGoogle Scholar
  18. Dolan, S. S., Bean, C. J., and Riollet, B., 1998, The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs, Geophys J. Int. 132:489–507.CrossRefGoogle Scholar
  19. Frankel, A., and Clayton, R. W., 1986, Finite difference simulations of seismic scattering: Implications for propagation of short-period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res. 91:6465–6489.CrossRefGoogle Scholar
  20. Fuchs, K., and Müller, G., 1971, Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astr. Soc. 23:417–433.CrossRefGoogle Scholar
  21. Fuchs, K., and Schulz, K., 1976, Tunneling of low-frequency waves through the subcrustallithosphere, J. Geophys. 42:175–190.Google Scholar
  22. Gajewski, D., Holbrook, W. S., and Prodehl, C., 1987, Combined reflection and refraction profiling in southwest Germany - detailed velocity mapping by the refraction survey, Geophys. J. R. Astr. Soc. 89:333–338.CrossRefGoogle Scholar
  23. Gebrande, H., 1976, A seismic-ray tracing method for two-dimensional inhomogeneous media, in: Explosion Seismology in Central Europe (P. Giese, C. Prodehl, and A. Stein, eds.), Springer-Verlag, Berlin, pp. 162–167.CrossRefGoogle Scholar
  24. Gibson, B. S., and Levander, A.R., 1988, Lower crustal reflectivity patterns in wide-angle seismic recordings, Geophys Res. Lett. 15:617–620.CrossRefGoogle Scholar
  25. Goff, J.A., and Levander, A., 1996, Incorporating “sinuous connectivity” into stochastic models of crustal heterogeneity: Examples from the Lewisian gneiss complex, Scotland, the Franciscan formation, California, and the Hafafit gneiss complex, Egypt, J. Geophys. Res 101:8489–8501.CrossRefGoogle Scholar
  26. Grandjean, G., Wu, H., White, D., Mareschal, M., and Hubert, C., 1995, Crustal velocity models for the Archean Abitibi greenstone belt from seismic refraction data, Can J. Earth Sci. 32:149–166.CrossRefGoogle Scholar
  27. Hodgson, J. H., 1953, A seismic survey in the Canadian Shield I: Refraction Studies based on rockbursts at Kirkland Lake, Ontario, Publications of the Dominion Observatory, Ottawa 16:113–163.Google Scholar
  28. Holliger, K., 1996, Upper-crustal seismic velocity heterogeneity as derived from a variety of P-wave sonic logs, Geophys. J Int. 125:813–829.CrossRefGoogle Scholar
  29. Holliger, K., Green, A. G., and Juhlin, C., 1996, Stochastic analysis of sonic logs from the upper crystalline crust: Methodology, Tectonophysics 264:341–356.CrossRefGoogle Scholar
  30. James, D. E., and Steinhart, J. S., 1966, Structure beneath continents: A critical review of explosion studies 1960–1965, in: The Earth Beneath the Continents, Geophysical Monograph 10 (J. S. Steinhart and T. D. Smith, eds.), American Geophysical Union, Washington, pp. 293–333.Google Scholar
  31. Jeffereys, H., 1926, On near earthquakes, Monthly Not. R. Astr. Soc. Geophys. Suppl. 1:385–402.CrossRefGoogle Scholar
  32. Jeffereys, H., 1962, The Earth, 4th edition, Cambridge University Press, London.Google Scholar
  33. Kelly, K. R., Ward, R. W., Treitel, S., and Alford, R. M. 1976, Synthetic seismograms. A finite difference approach, Geophysics 41:2–27.Google Scholar
  34. Klemperer, S. L., and Mooney, W. D. (eds.), 1998, Deep Seismic Profiling of the Continents. I. General Results and New Methods. II. A Global Survey,Tectonophysics, Volume 288, Elsevier, Amsterdam.Google Scholar
  35. Levander, A. R., and Gibson, B. S., 1991, Wide-angle seismic reflections from two-dimensional random target zones, J. Geophys. Res. 96:10251–10260.CrossRefGoogle Scholar
  36. Levander, A. R., and Holliger, K., 1992, Small-scale heterogeneity and large-scale velocity structure of the continental crust, J. Geophys. Res. 97:8797–8804.CrossRefGoogle Scholar
  37. Levander, A. R., Hobbs, R. W., Smith, S. K., England, R. W., Snyder, D. B., and Holliger, K., 1994, The crust as a heterogeneous “optical medium”, or “crocodiles in the mist”, Tectonophysics 232:281–297.CrossRefGoogle Scholar
  38. Litak, R.K., and Brown, L., 1989, A modern perspective of the Conrad discontinuity, EOS 70:722–725.CrossRefGoogle Scholar
  39. Line, C. E. R., Hobbs, R. W., Hudson, J. A., and Snyder, D. B., 1998, Statistical inversion of controlled-source seismic data using parabolic wave scattering theory, Geophys. J. Int. 132:61–78.CrossRefGoogle Scholar
  40. Long, C., and Salisbury, M. H., 1996, The velocity structure of the Britt Domain, southwestern Grenville Province, from laboratory and refraction experiments, Can. J. Earth. Sci. 33:729–745.CrossRefGoogle Scholar
  41. Long, R. E., Mathews, P. A., and Graham, D. P., 1994, The nature of crustal boundaries: combined interpretation of wide-angle and normal-incidence seismic data, Tectonophysics 232:309–318.CrossRefGoogle Scholar
  42. Ludden, J., and Hynes, A., 2000, The Lithoprobe Abitibi-Grenville transect: Two billion years of crust formation and recycling in the Precambrian Shield, Can. J. Earth Sci. 37:459–476.CrossRefGoogle Scholar
  43. Luetgert, J. H., 1992, Interactive Two-Dimensional Seismic Ray Tracing for the MacIntosh, US Geological Survey Open File Rep. 92–356.Google Scholar
  44. Mandelbrot, B. B, 1983, The Fractal Geometry of Nature, Freeman, New York.Google Scholar
  45. Mathews, D., and Smith, C. (eds.) 1987, Deep Seismic Reflection Profiling of the Continental Lithosphere,Geophys. J. R. Astr. Soc., Volume 89, London.Google Scholar
  46. McCamy, K., and Meyer, R. P., 1966, Crustal results of fixed multiple shots in the Mississippi Embayment, in: The Earth Beneath the Continents, Geophysical Monograph 10 (J. S. Steinhart and T. J. Smith, eds.), American Geophysical Union, Washington, pp. 370–381.Google Scholar
  47. McMechan, G. A., and Mooney, W. D., 1980, Asymptotic ray theory and synthetic seismograms for laterally varying structures: Theory and application to the Imperial Valley, California, Bull. Seismol. Soc. Am. 70:2021–2035.Google Scholar
  48. Meissner, R., 1986. The Continental Crust: A Geophysical Approach,Academic Press, New York.Google Scholar
  49. Meissner, R., and Rabbel, W., 1999, Nature of crustal reflectivity along DEKORP profiles Germany in comparison with reflection patterns from different tectonic units worldwide: A review, Pure AppL Geophys. 156:7–28.CrossRefGoogle Scholar
  50. Meissner, R., Brown, L., Dürbaum, H., Franke, W., Fuchs, K., and Seifert, F. (eds.), 1991, Continental Lithosphere: Deep Seismic Reflections,Geodynamic Series 22, American Geophysical Union, Washington.CrossRefGoogle Scholar
  51. Mereu, R. F., 1987, An interpretation of the seismic refraction data recorded along profile SJ-6: Morro Bay-Sierra Nevada, California, in: Interpretations of the SJ-6 seismic reflection/refraction profile, South Central California, USA (A. W. Walters and W. D. Mooney, eds.), USGS Open-File Report 87 83, pp. 20–37.Google Scholar
  52. Mereu, R. F., 2000a, The effect of small random crustal reflectors on the complexity of Pg and PmP coda, Phys. Earth Planet. Int. 120:183–199.CrossRefGoogle Scholar
  53. Mereu, R. F., 2000b, The complexity of the crust and Moho under the southeastern Superior and Grenville provinces of the Canadian Shield from seismic refraction/wide-angle reflection data, Can. J. Earth Sci. 37:439–458.CrossRefGoogle Scholar
  54. Mereu, R. F., and Ojo, S. B., 1981, The scattering of seismic waves through a crust and upper mantle with random lateral and vertical inhomogeneities, Phys. Earth Planet. Inter. 26:233–240.CrossRefGoogle Scholar
  55. Mereu, R. F., Baerg, J., and, Wu, J., 1989, The complexity of the continental Earth’s lower crust and Moho from PmP data: Results from CoCrust experiments, in: Properties and Processes of the Lower Crust, Geophysical Monograph Series 51 (R. F. Mereu and D. M. Fountain, eds.), American Geophysical Union, Washington, pp. 1103–1119.Google Scholar
  56. Mereu, R. F., Epili, D., and Green, A. G., 1990, Pg shingles: preliminary results from the onshore GLIMPCE refraction experiment, Tectonophysics 173:617–626.CrossRefGoogle Scholar
  57. Mohorovičić, A., 1910, Das Beben vom 8. X. 1909, Jb. Met. Obs. Zagreb 9:1–63.Google Scholar
  58. Mooney, W., and Brocher, T. M., 1987, Coincident seismic reflection/refraction studies of the continental lithosphere: A global review, Rev. Geophys. 25:723–742.CrossRefGoogle Scholar
  59. Mueller, S., 1977, A new model of the continental crust, in: The Earth’s Crust (J. G. Heacock, ed.), Geophysical Monograph 20, American Geophysical Union, Washington, pp. 289–318.CrossRefGoogle Scholar
  60. Mueller, S., Peterschmitt, E., Fuchs, K., Emter, D., and Ansorge, H., 1973, Crustal structure of the Rhinegraben area, Tectonophysics 20:381–391.CrossRefGoogle Scholar
  61. Mueller, S., Ansorge, J., Sierro, N., Finckh, P., and Emter, D., 1987, Synoptic interpretation of seismic reflection and refraction data, Geophys. J. R. Astr. Soc. 89:345–352.CrossRefGoogle Scholar
  62. Nikolajev, A. V., and Tregub, F. S., 1970, A statistical model of the Earth’s crust: method and results, Tectonophysics 10:573–578.CrossRefGoogle Scholar
  63. Ojo, S. B., and Mereu, R. F., 1986, The effect of random velocity fluctuations on the travel-time and amplitudes of seismic waves, Geophys. J. R. Astr. Soc. 84:607–618.CrossRefGoogle Scholar
  64. Ryberg, T., Tittgemeyer, M., and Wenzel, F., 2000, Finite-difference modelling of P-wave scattering in the upper mantle, Geophys. J. Int. 141:87–800.Google Scholar
  65. Sandmeier, K. J., and Wenzel, F., 1986, Seismograms for a complex crustal model, Geophys. Res. Lett., 13:22–25.CrossRefGoogle Scholar
  66. Shapiro, S. A., Schwarz, R., and Gold, N., 1996, The effect of random isotropic inhomogeneities on the phase velocity of seismic waves, Geophys. J. Int. 127:783–794.CrossRefGoogle Scholar
  67. Smithson, S. B., 1978, Modeling the continental crust: Structural and chemical constraints, Geophys. Res. Lett. 5:749–752.CrossRefGoogle Scholar
  68. Steinhart, J. S., and Smith, T. D. (eds.), 1966, The Earth Beneath the Continents,Geophysical Monograph 10, American Geophysical Union, Washington.Google Scholar
  69. Stephenson, R. A., Zelt, C. A., Ellis, R. M., Hajnal, Z., Morel-A-L’Huissier, P., Mereu, R. F., Northey, D.J., West, G.F., and Kanasewich, E., 1989, Crust and upper mantle structure and the origin of the Peace River arch, Bull. Can. Petroleum Geol. 37:224–235.Google Scholar
  70. Tittgemeyer, M., Wenzel, F., Ryberg, T., and Fuchs, K., 1999, Scales of heterogeneities in the continental crust and upper mantle, Pure Appl. Geophys. 156:29–52.CrossRefGoogle Scholar
  71. Tittgemeyer, M., Wenzel, F., and Fuchs, K., 2000, On the nature of Pn, J. Geophys, Res. 105:16,173–16,180.CrossRefGoogle Scholar
  72. Warner, M., 1987, Migration - Why doesn’t it work for deep continental data, Geophys. J. R. Astr. Soc. 89:21–26.CrossRefGoogle Scholar
  73. Weyer, T., 1989, The Conrad discontinuity and the top of the reflective lower crust- Do they coincide?, Tectonophysics 157:39–58.CrossRefGoogle Scholar
  74. White, D. J., 1989, Two-dimensional seismic refraction tomography, Geophys. J. 97:223–245.CrossRefGoogle Scholar
  75. White, D. J., Forsyth, D. A., Asudeh, I., Carr, S. D., Wu, H., Easton, R. M., and Mereu, R. F.,2000, A seismic-based cross-section of the Grenville orogen in southern Ontario and western Quebec, Can J. Earth Sci. 37:183–192.CrossRefGoogle Scholar
  76. Winnardhi, S., and Mereu, R. F., 1997, Crustal velocity structure of the Superior and Grenville provinces of the southeastern Canadian Shield, Can. J. Earth Sci. 34:1167–1184.CrossRefGoogle Scholar
  77. Witte, O. Roth, M., and Mailer, G., 1996, Ray tracing in random media, Geophys. J. Int. 124:159–169.CrossRefGoogle Scholar
  78. Zelt, C. A., and Smith, R. B., 1992, Seismic travel-time inversion for 2-D crustal velocity structure, Geophys. J. Int. 108:16–34.CrossRefGoogle Scholar
  79. Zelt, C. A., Forsyth, D. A., Milkereit, B., White, D. J., Asudeh, I., and Easton, R. M., 1994, Seismic structure of the Central Metasedimentary belt, southern Grenville province, Can. J Earth Sci. 31:243–254.CrossRefGoogle Scholar
  80. Zelt, B. C., Ellis, R. M., Zelt, C. A., Hyndman, R. D., Lowe, C., Spence, G. D., and Fisher, M. A., 2001, Three-dimensional crustal velocity structure beneath the Strait of Georgia, British Columbia, Geophys. J. Int. 144:695–712.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations