Advertisement

Transgenosis for Changes of Physical Properties of Plants and Plant Products

  • Miloš Ondřej

Abstract

Integration of cloned genes into the plant genome - plant transgenosis became reality after the finding of Chilton et al. (1977) that the soil bacterium Agrobacterium tumefaciens introduces part of its DNA (called T-DNA) into the plant genome. The first transgenic commercionaly available plant varieties appeared in 1994 and the area of growing transgenic plant varieties in 2001 already reached approximately 500 000 km2, which is probably the greatest breeding success in the history.

Keywords

Transgenic Plant Green Fluorescent Protein Hairy Root Transgenic Tobacco Transgenic Tobacco Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyoshi, D.E., Morris, R.O., Hinz, R.O., Mischke, B.S., Kosuge, T., Garfinkel, D., Gordon, M.P., Nester, E.W., 1983. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80:407–411.PubMedCrossRefGoogle Scholar
  2. Arrilage, I., Gil-Mascarell, R., Gilbert, C, Sales, E., Montesionos, C., Serrano, R. Moreno, V.,1998. Expression of the yeast HAL2 gene in tomatoe increases the in vitro salt tolerance of transgenic progenies. Plant Sci.136:219–226.CrossRefGoogle Scholar
  3. Bachem, C.V.B., Speckman, G.J., Linde, P.C.G., Verghebben, F.T.M., Hunt, M.D., Steffens, J.C., Yabeau, M., 1997. Antisense expression of polyphenol oxidase genes inhibit enzymatic browning in potato tubers. Biotechnology 12: 1101–1105.Google Scholar
  4. Barro, F., Rooke, L., Békés, F., Gras, P., Tatham, A.S., Fido, R., Lazzeri, P.A., Shewry, P.R., Barcelo, P., 1997. Transformation of wheat with HMW subunit genes resulting in improved function properties. Nature Biotechnol. 15: 1295–1299.CrossRefGoogle Scholar
  5. Barry, G.F., Rogers, S.G., Fralery, R.T., Brand, L., 1984. Identification of cloned cytokinin biosythetic gene. Proc. Nat. Acad. Sci. USA 81:4776–4780.PubMedCrossRefGoogle Scholar
  6. Batschauer, A., 1998. Photoreceptors of higher plants. Planta 206: 479–492.PubMedCrossRefGoogle Scholar
  7. Baucher, M., Monties, B., Van Montagu, M., Boerjan, W., 1998. Biosynthesis and genetic engineering of lignin. Crc. Rev. Plant Sci. 17:125–197.CrossRefGoogle Scholar
  8. Bird, C.R., Ray, J.A., Fletcher, J.D., Boniwell, J.M., Bird, A.S., Teuliers, C., Blain, I., Bramley, P.M., Schuch, W., 1991. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Nature Biotech. 9: 635–639,1991.CrossRefGoogle Scholar
  9. Blechl, A.E., Anderson, O.D., 1996. Expression of a high-molecular-glutein gene in transgenic wheat. Nature Biotechnol. 14: 875–879.CrossRefGoogle Scholar
  10. Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptation to environmental stresses. Plant Cell 7: 1099–1111.PubMedGoogle Scholar
  11. Branlard, G., Autran, J.C., Monnevaux, P. 1989. High molecular weight glutein subunits of durum wheat (T. durum). Theor. Appl Genet. 78: 353–358.CrossRefGoogle Scholar
  12. Cardarelli, M., Mariotti, D., Pomponi, M., Spano, L., Capone, I., Costantino, P., 1987. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol. Gen. Genet. 209: 475–480.PubMedCrossRefGoogle Scholar
  13. Chalfie, M., Yu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C., 1994. Green fluorescent protein as a vital marker for gene expression. Science 263:663–664. CrossRefGoogle Scholar
  14. Chilton, M.D., Drummond, H.J., Merlo, D.J., Sciaky, D., Gordon, M.P., Nester, E.W., 1997. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis.Cell 11:263–271.CrossRefGoogle Scholar
  15. Chrisley, M.C., 1997. Transgenic crop plants using Agrobacterium rhizogenes-mediated transformation. In: Deran, L.P.M. (Ed.): Hairy Roots: Culture and Application. Harwood Academic Publishers, Amsterdam, pp. 99–111.Google Scholar
  16. Clack, T., Mathews, S., Sharrock, R.A., 1994. The phytochrome apoprotein fmily in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25: 413–427.PubMedCrossRefGoogle Scholar
  17. Damiani, F., Arcioni, S., 1991. Transformation of Medicago arborea L. with an Agrobacterium rhizogenes binary vector carrying the hygromycin resistance gene. Plant Cell Rep. 10: 300–303.CrossRefGoogle Scholar
  18. Dehio, C., Grossmann, K., Schell, J., Schmülling, T., 1993. Phenotype and hormonal status of transgenic tobacco plants expressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol. Biol. 23:1199–1210.PubMedCrossRefGoogle Scholar
  19. Dwinudi, U.N., Campbell, W.H., Zu, J., Datla, R.S.S., Bugos, R.C., Chiang, V.L., Podila, G.K., 1994. Modification of the lignin biosynthesis in transgenic Nicotiana through expression of antisense O-methyltransferase gene from Populus. Plant Mol Biol. 26: 61–71,1994.CrossRefGoogle Scholar
  20. Ebskamp, M.J.M., Van der Meer, I.M., Spronk, B.A., Weisbeek, P.J., Smeekens, S.C.M., 1994. Accumulation of fructose polymers in transgenic tobacco. Biotechnology 12: 272– 275.PubMedCrossRefGoogle Scholar
  21. Edwards, A., Fulton, D.C., Hylton, C.M., Jobling, S.A., Gidlez, M., Rőssner, V., Martin, C., Smith, A.M., 1999. Specificity of starch synthase isoforms from potato. Eur. J. Biochem. 266: 724–736.PubMedCrossRefGoogle Scholar
  22. Estruch, J.J., Chriqui, D., Grossmann, K., Schell, J., Spena, A., 1991a. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10: 2889–2895.PubMedGoogle Scholar
  23. Estruch, J.J., Schell, J., Spena, A., 1991b. The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBOJ. 10: 3125–3128.Google Scholar
  24. Fergason, V., 1994. High amylose and waxy corns. In: Hallauer, A.R. (Ed.): Speciality Corns. CRC Press, Pp. 55–77.Google Scholar
  25. Flipse, E., Huisman, J.G., de Vries, B.J., Bergervoet, J.E.M., Jacobsen, E., Visser, R.G.F., 1994: Expression of a wild-type GBSS gene introduced into an amylose-free potato mutant by Agrobacterium tumefaciens and the inheritance of the insert at the microscopical level. Theor. Appl Genet 88: 369–375.CrossRefGoogle Scholar
  26. Fover, C.H., Descourviers, P., Kunert, K.J., 1994. Protection against oxygen radicals: an important defence mechanism studies in transgenic plants. Plant Cell Env. 17: 507–523.CrossRefGoogle Scholar
  27. Franke, R., McMichael, C, Meyer, K., Shirley, A.M., Cosumano, J.C., Chappie, C, 2000. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene ferulate 5-hydroxylase. Plant J. 22: 223–234.PubMedCrossRefGoogle Scholar
  28. Fray, R.G., Fraser, P.D., Valero, D., Hedden, P., Bramley, P.M., Galbright, D.W., Lambert, G.M., Grebenok, R.J., Sheen, J., 1995. Methods in Cell Biology. Acad. Press, San Diego.Google Scholar
  29. Gan, S., Amasino, R.M. 1995. Inhibition of leaf senescence by the autoregulated production of cytokinin. Science 270: 1986–1988.PubMedCrossRefGoogle Scholar
  30. Geigenberger, P., Hajirezan, M., Geiger, M., Dettig, V., Sonnewald, V., Stilt, M., 1988. Overexpression of pyrophosphorylase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch conversion and increased levels of nucleotides in potato tubers. Planta 205: 428–437.CrossRefGoogle Scholar
  31. Good, X., Kellog, W., Langhoff, D., Matsumura, W., Bestwick, R.K., 1994. Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol. 26: 781–790, 1994. PubMedCrossRefGoogle Scholar
  32. Goto, F., Yashihara, T., Saiki, H., 2000. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor. Appl. Genet. 100: 658– 664.CrossRefGoogle Scholar
  33. Greene, T.W., 1998. Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics. Proc. Natl. Acad. Sci. USA 95: 19322–10327.Google Scholar
  34. Greyburn, W.S., Collins, G.B., Hildebrand, D.G.F., 1992. Fatty acid alternation by a ω9- desaturase in transgenic tobacco tissue. Biotechnology 10: 675–679.CrossRefGoogle Scholar
  35. Grierson, S., Schuch, W., 1993. Control of ripening. Phil. Trans. Roy. Soc. London 342: 241– 250.CrossRefGoogle Scholar
  36. Grierson, D., 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by directing metabolites from the gibberellin pathway. Plant J. 8: 693–701.CrossRefGoogle Scholar
  37. Grima-Pettenati, J., Goñher, D., 1999. Lignin genetic engineering revised. Plant Sci. 145: 51–65.CrossRefGoogle Scholar
  38. Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J., Allen, R.D., 1993. Incresed resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn supoeroxide dismutase. Proc. Natl. Acad. Sci. USA 90: 1629–1633.PubMedCrossRefGoogle Scholar
  39. Halpin, C., Knight, G.A., Campbell, M.M., Boudert, A.M., Boon, J.J., Chabbert, B., Tolier, M.-T., Schuch, W., 1994. Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J. 6: 339–350.CrossRefGoogle Scholar
  40. Hamad, T., Kodama, H., Nishimura, M., Iba, K., 1996. Modification of fatty acid composition by over- and antisense-expression of a microsomal ω-fatty acid desaturase gene in transgenic tobacco. Transgenic Res. 5:115–121.CrossRefGoogle Scholar
  41. Hamilton, A.J., Lycett, G.W., Grierson, D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287, 1990.CrossRefGoogle Scholar
  42. Handa, T., 1992. Genetic transformation of Antirrhinum majus L. and inheritance of altered phenotype induced by Ri T-DNA. Plant Sci. 81: 199–207.CrossRefGoogle Scholar
  43. Hanley, Z., Slabas, T., Elborough, M., 2000. The use of plant biotechnology for the production of biodegradable plastics. Trends in Plant Sci. 5: 45–49.CrossRefGoogle Scholar
  44. Haseloff, J., Siemering, K.R., Prasher, D.C., Hodge, S., 1997. Removal of a cryptic intron and subcellular localization of the green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.PubMedCrossRefGoogle Scholar
  45. He, G.Y., Rooke, I., Steele, F., Békés, F., Gras, P., Tatham, A.S., Fido, R., Barcelo, P. M., Shewry, P.R., Lazzeti, P.A., 1999. Transformation of pasta wheat (Triticum durum var. durum) with high-molecular-weight glutein subunit genes and modification of dought functionality. Molec. Breeding 5: 377–386.CrossRefGoogle Scholar
  46. Heim, R., Prasher, D., Tsien, R., 1994. Wavelength mutations and posttranslational autooxidation of green fluorescent protein. Proc. Nat. Acad. Sci. USA 91: 125012–12504.CrossRefGoogle Scholar
  47. Heim, R., Cubitt, A., Tsien, R., 1995. Improved green fluorescence. Nature 373: 663–664.PubMedCrossRefGoogle Scholar
  48. Heim, R., Tsien, R.Y., 1996: Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178–182.PubMedCrossRefGoogle Scholar
  49. Hewelt, A., Prinsen, E., Schell, J., Van Onckelen, G., Schműlling, T., 1994. Promotor-tagging with a promotorless ipt gene leads to cytokinin-induced phenotypic viability in transgenic tobacco plants: implications and gene dosage effects. Plant J. 6: 879–891, 1994.PubMedCrossRefGoogle Scholar
  50. Jang, I.-C., Nahm, B.H., Kim, J.-K., 1999. Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Molec. Breeding 5: 453–561, 1999.CrossRefGoogle Scholar
  51. Jaglo-Ottosen, K.R., 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106.PubMedCrossRefGoogle Scholar
  52. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W., 1987. GUS fusion: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907. PubMedGoogle Scholar
  53. Jobling, S.A., 2001. A minor form of starch branching enzyme in potato (Solarium tuberosum) tubers has a major effect on starch structure: Cloning and characterization of multiple forms of SBEA.Plant J. 18: 163–171.CrossRefGoogle Scholar
  54. Kenward, K.D., Brandle, J., McPherson, J., Davies, P.L., 1999. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Res. 8:105–117.PubMedCrossRefGoogle Scholar
  55. Klee, H.J., Horsch, R.B., Hinchee, M.A., Hein, M.B., Hoffman, N.L., 1987. The effect of overproduction of two Agrobacterium tumefaciens T-DNA gene auxin biosynthesis gene products in transgenic Petunia plants. Genes Dev. 1: 86–96.CrossRefGoogle Scholar
  56. Knutzon, D.S., Thompson, G.A., Radke, S.E., Johnson, W.B., Knauf, V.C., Kridl, J.C., 1992. Modification of Brassica seed oil by antisense expression of a steraoyl-acyl-carrier protein desaturase gene. Proc. Natl Acad. Sci. USA 89: 2624–2628.PubMedCrossRefGoogle Scholar
  57. Köhler, R.H., Zipfer, W.W., Hanson, M.R., 1997a. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 11:613–621.PubMedCrossRefGoogle Scholar
  58. Köhler, R.H., Cao, J., Zipfer, W.R., Hanson, M.R., 1997b. Exchange of protein molecules through connection between higher plant plastids. Science 276: 2039–2042.PubMedCrossRefGoogle Scholar
  59. Kubo, A., Harada, K., Sonnewald, O., Willmitzer, L., 1999. The starch debranching enzymes isoamylase and pullulanase are both involved in amylopetin biosynthesis in rice endospem. Plant Pnysiol. 121: 399–409.CrossRefGoogle Scholar
  60. Lilius, G., Holmberg, N., Bullowe, L., 1996. Enhaned NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14: 177–179.CrossRefGoogle Scholar
  61. Martin-Tanguy, J, Sun, L.Y., Burton, D., Vernoy, R., Rossin, N., Tepfer, D., 1996. Attenuation of the phenotype caused by the root-inducing, left-handed, transferred DNA and its rolA gene. Plant Pnysiol 11:259–267.Google Scholar
  62. Maurel, C., Barbierbrigoo, H., Spena, A., Tempé, J., Guern, J., 1991. Single rol genes from the Agrobacterium rhizogenes TL-DNA after some of the cellular responses to auxin in Nicotiana tabacum. Plant Pnysiol. 102: 261–271.Google Scholar
  63. McCormac, A.C., Cherry, J.R., Hershey, J.P., Vierstra, R.D., Smith, H. 1991. Photoresponses in transgenic tobacco plants carrying an oat phytochrome gene. Planta 185: 162–170, 1991.CrossRefGoogle Scholar
  64. McKersie, B.D., Bowley, S.R., Harjanto, E., Leprince, O., 1996. Water-deficient tolerance and field performance of transgenic alfalfa overproducing Superoxide dismutase. Plant Physiol. 111. 1171–1177.Google Scholar
  65. Mûller-Rőber, B., Kossman, J., 1994. Approaches to influence starch quantity and starch quality in transgenic plants. Plant Cell Env. 17: 601–613.CrossRefGoogle Scholar
  66. Műller-R őber, B., Sonnewald, O., Willmitzer, L., 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 11: 1229–1238.Google Scholar
  67. Nawrath, C., Poirier, V., Somerville, C., 1994. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana in high levels of polymer accumulation. Proc. Natl. Acad Sci. USA 91: 1260–1274.CrossRefGoogle Scholar
  68. Nilsson, O., Moritz, T., Imbault, N., Sandberg, G., Olsson, O., 1993. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol. 102: 363–371.PubMedGoogle Scholar
  69. Oeller, P.W., Min-Wong, L., Taylor, R., Pike, D., Theologis, A., 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–438.PubMedCrossRefGoogle Scholar
  70. Ondřej, M., Eder, J., Hrouda, M., Macháčková, I., Vlasák, J., 1989. Free auxin level and inheritance of introduced markers in tobacco transformed by binary vector based on A4 Ri plasmid. Biol. Plant. 31: 286–291.CrossRefGoogle Scholar
  71. Ondřej, M., Macháčková, I., Óatský, J., Eder, J., Hrouda, M., Pospíšilová, J., Synková, H., 1990. Potato transformation by T-DNA cytokinin synthesis gene. Biol. Plant 32: 401–406.CrossRefGoogle Scholar
  72. Oono, Y., Kanawa, K., Uchimiya, H., 1990. Early transformation of transgenic tobacco plants possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Jpn. J. Genet. 65: 7–16.CrossRefGoogle Scholar
  73. Ow, D.W., Wood, K.V., DeLuca, M., deWet, J.R., Helinski, D.R., Howell, S.H., 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859.PubMedCrossRefGoogle Scholar
  74. Reddy, A.S., Thomas, T.L., 1996. Expresion of a cyanobacterial ω6-desaturase gene results in γ-linoleic acid production in transgenic plants. Nature Biotechnol. 14: 639–642.CrossRefGoogle Scholar
  75. Rőber, M., Geider, K., Müller-Rőber, B., Willmitzer, L., 1996. Synthesis of fructans in tubers of transgenic starch-deficient potato plants does not result in an increased allocation of carbohydrates. Planta 199: 528–536.PubMedGoogle Scholar
  76. Robson, P.R.H., McCormac, A.C., Irvine, A.S., Smith, H., 1996. Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nature Biotech. 14: 995–998.CrossRefGoogle Scholar
  77. Romano, C.P., Cooper, M.L., Klee, H.J., 1983. Uncouping auxin and ethylene effects in transgenic tobacco and Arabidopsis thaliana plants. Plant Cell 5: 181–189.Google Scholar
  78. Romano, C.P., Hein, M.B., Klee, H.J.: Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes and Dev. 5: 438–446,1991.PubMedCrossRefGoogle Scholar
  79. Sakamoto, A., Murata, A., Murata, N., 1998. Metabolic engineering of rice leading to biosynthesis of glycinbetaine and tolerance to salt and cold. Plant Mol. Biol. 38: 1011–1019.PubMedCrossRefGoogle Scholar
  80. Scheller, J., Gührs, K.-H., Grosse, F., Conrad, U., 2001. Production of spider silk protein in tobacco and potato. Nature Biotech. 19: 573–577.CrossRefGoogle Scholar
  81. Schmülling, T., Schell, J., Spena, A., 1988. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7: 2621–2629.PubMedGoogle Scholar
  82. Schmülling, T., Beinsberger, S., DeGreef, J., Schell, J., Van Onckelen, H., Spena, A., 1989. Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett. 249: 4012–406.CrossRefGoogle Scholar
  83. Schröder, G., Waffenschmidt, S., Weiler, E.W., Schröder, J., 1984. The region of Ti plasmid codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138: 387–391.PubMedCrossRefGoogle Scholar
  84. Sharrock, R.A., Quail, P.H., 1990. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3: 1745–1757.CrossRefGoogle Scholar
  85. Sidorov, V.A., Kasten, D., Pang, S.-Z., Hajdukiewicz, P.TJ., Staub, J.M., Nehra, N.S. (1999). Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19: 209–216.PubMedCrossRefGoogle Scholar
  86. Sitbon, F., Sundberg, B., Olsson, O., Sundberg, G., 1991. Free and conjugated indolacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH biosynthetic genes from Agrobacterium tumefaciens. Plant Physiol. 95: 480–485.PubMedCrossRefGoogle Scholar
  87. Sitbon, F., Hennion, S., Sundberg, B., Little, C.H.A., Olsson, O., Sandberg, G. 1992a. Transgenic tobacco plants coexpressing Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol. 99: 1062–1069.PubMedCrossRefGoogle Scholar
  88. Sitbon, F., Little, C.H.A., Olsson, O., Sandberg, G., 1992b. Correlation between expression of T-DNA IAA biosynthetic genes from developmentaly regulated promotors and the distribution of IAA in different organs of transgenic tobacco. Physiol. Plant. 85: 679–688.CrossRefGoogle Scholar
  89. Slater, S., Houmiel, K.L., Traut, M., Mirsky, T.A., Padgatte, S.R., Grusz, K.J.I., 1998. Multiple ß-ketothiolases mediate poly(ß-hydroxyalkanolate) copolymer synthesis in Ralstonia eutropha.J. Bacteriol. 180: 1979–1989.Google Scholar
  90. Slater, S., Mirsky, J., Hormiel, K.L., Hao, M., Reiser, S.S., Taylor, N.B., Tran, M., Smith, H., Whitelam, G.C., 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Env. 20: 840–844.CrossRefGoogle Scholar
  91. Slater, C.J., Kavakli, H.I., Okita, T.W., 2000. Engineering starch for increased quality and quantity. Trends in Plant Sci. 5: 291–298. CrossRefGoogle Scholar
  92. Slightom, J., Durand-Tardif, M., Jouanin, L., Tepfer, D., 1986. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J. Biol. Physiol 261: 108–121.Google Scholar
  93. Smart,C.M., Scofield, S.R., Bevan, M.W., Dyer, T.A., 1991. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production of Agrobacterium. Cell 3: 647–656.Google Scholar
  94. Smigocki, A.C., 1995. Expression of a wound-inducible cytokinin biosynthesis gene in transgenic tobacco: correlation of root expression with induction of cytokinin effects. Plant Sci. 109: 153–163.CrossRefGoogle Scholar
  95. Smigocki, A.C., Owens, I.D., 1988. Cytokinin gene fused with a strong promotor enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc. Natl Acad. Sci. USA 85: 5131–5135.PubMedCrossRefGoogle Scholar
  96. Smith, C.J.S., Watson, C.F., Ray, J., Bird, C.R., Morris, P.C., Schuch, W., Grierson, D., 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.CrossRefGoogle Scholar
  97. Smith, C.J., Watson, C.F., Morris, P.C., Seymour, G.B., Gray, J.E., Arnold, C, Tucke, G.A., Schuch, W., Harding, S., Grierson, D., 199). Inheritance and the effect of ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol. 14: 369–379.Google Scholar
  98. Spena, A., Prinsen, E., Fladung, M., Schultye, S.C., Van Onckelen, H.: The indolacetic acidlysine synthetase gene of Pseudomonas syringae subsp. savastanoi developmental alternations in transgenic tobacco and potato plants. Mol. Gen. Genet. 227: 205–212, 1991.PubMedCrossRefGoogle Scholar
  99. Stark, D.M., Timmermann, K.P., Barry, G.P., Preiss, J., Kishore, G.M., 1992. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258: 287–292.PubMedCrossRefGoogle Scholar
  100. Strobel, G.A., Nachmias, A., Hess, D., 1988. Improvement of the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Canad. J. Bot. 66: 2581–2585.CrossRefGoogle Scholar
  101. Suginuma, C., Akihama, T., 1995. Transformation of gentian with Agrobacterium rhizogenes. Acta Hort. 392: 153–160.Google Scholar
  102. Sweetlove, L.J., Burreel, M.M., Reews, T.A., 1996. Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADP glucose pyrophosphorylase. Biochem. J. 320: 493–498.PubMedGoogle Scholar
  103. Takebe, T., Nakamura, T., Nomura, T., Hayashi, Y., Ishitani, M., Muramoto Y., Tanaka, A., Takebe, T., 1993. Glycinbetaine and the genetic engineering of salinity tolerance in plants. In: Satoh, K., Murata, N. (Eds.): Stress response in photosynthetic organisms. Elsevier Sci. Publ. Amsterdam, pp. 115–151.Google Scholar
  104. Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Takebe, T., 2000. Enhanced tolerance to salt stress in transgenic rice that overexpress chloroplast glutamine synthetase. Plant Mol .Biol. 43: 103–111.PubMedCrossRefGoogle Scholar
  105. Tanaka, N., Matsumoto, T., 1993. Regeneration of Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep. 13: 87–90.CrossRefGoogle Scholar
  106. Tarcyznski, M.C., Jensen, R.G., Bohnert, H.J., 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510.CrossRefGoogle Scholar
  107. Thomas, J.C., Smigocki, A.C., Bohnert, H.J., 1995. Light induced expression of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco. Plant Mol Biol. 27: 225–235.PubMedCrossRefGoogle Scholar
  108. Thomashow, L.S., Reeves, S., Thomashow, M.F., 1984. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyses synthesis of indole-3-acetic acid. Proc. Natl. Acad. Sci. USA 81: 5071–5075.PubMedCrossRefGoogle Scholar
  109. Thomashow, M.F., Hugly, S., Buchholz, L.S., 1986. Molecular basis for the auxin-independent phenotype of crown gall tissues. Science 231: 616–618. PubMedCrossRefGoogle Scholar
  110. Tuominen, H., Sitbon, F., Jacobsson, C., Sanberg, G., Olsson, G., Sandberg, B., 1995. Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indolacetic acid-biosynthesis genes. Plant Physiol 109:1179–1189.PubMedGoogle Scholar
  111. Valentin, H.E., Rodriquez, D.J., Stone, D., Padgate, S.R., Kishore, G., Gruis, K.J., 1999. Metabolic engineering of Arabidopsis and Brassica for poly-3-hydroxybutyrate-co-3hydroxyvalerate copolymer production. Nature Biotechnol 17:1011–1016.CrossRefGoogle Scholar
  112. Van der Leij, F.R., Witholt, B., 1995. Strategies for the sustainable production of new degradable polyesters in plants: a review. Canad. J. Microbiol 41 (Suppl.): 222–238.CrossRefGoogle Scholar
  113. Van Onckelen, H., Prinsen, E., Inzé, D., Rudelsheim, P., Van Lijsebettens, M., Follin, J., Greef, J., 1986. Agrobacterium T-DNA gene 1 codes for tryptophan-2-monooxygenase activity in tobacco crown gall cells. FEBS Lett. 198:357–360.CrossRefGoogle Scholar
  114. Vartanian, N., Berkaloff, A., 1989. Drought adaptability of Agrobacterium rhizogenes -induced roots in oilseed rape (Brassica napus var. oleifera). Plant Cell Env. 12:197–204.CrossRefGoogle Scholar
  115. Verhaven, K., van der Kop, D.A.M., Jacobsen, E., Feenstra, W.J., 1992. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum) by the gene encoding granule-bound starch synthase. Theor. Appl Genet. 82: 289–295.Google Scholar
  116. Visser, R.G.F., Hergerberg, M., van der Leij, F.R., Jacobsen, E., Witholt, B., Feenstra, W.J., 1989. Molecular cloning and partial characterization of the gene for granule-bond starch synthase from a wild type and an amylose-free potato (Solanum tuberosum L.) Plant Sci. 64:185–192.CrossRefGoogle Scholar
  117. Vlasák, J., Ondřej, M.: Construction and use of Agrobacterium tumefaciens binary vectors with A. tumefaciens C58 T-DNA genes. Folia Microbiol. 37:227–340,1992.CrossRefGoogle Scholar
  118. Watson, J.M., 1990. Genetic engineering of low-lignin pasture plants. In: Akin, D.E., Ljundgal, L.G., Wilson, J.R., Harris, P.J. (Ed.), 1990. Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants. Pp. 215–227, Elsevier, New York.Google Scholar
  119. Yan, L., Wang, G., Jiu, J., Peng, X., Xie, Y., Dai, J., Guo, S., Zhang, F., 1990. Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants. Sci.in China 42: 90–95.Google Scholar
  120. Zhang, H.G., Blumwald, E., 2001. Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in fruits. Nature Biotechnol. 19: 765–768.CrossRefGoogle Scholar
  121. Zhang, J., Van Toai, T., Preiszner, J., 2000. Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Molec. Breeding 6: 135–144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Miloš Ondřej
    • 1
  1. 1.Academy of Sciences of Czech RepublicInstitute of Plant Molecular BiologyCzech Republic

Personalised recommendations