Skip to main content

Abstract

Molecular anions are important in many gas- and solution-phase chemical processes; examples include the classic Waiden inversion reaction in organic chemistry and the complex set of anion-molecule reactions that establish the equilibrium concentrations of negatively-charged species in the upper atmosphere. Molecular anions also play an important role in the scattering or capture of electrons by molecules, including dissociative attachment processes—a subject of this symposium. However, little definitive experimental information exists on the structure and properties of molecular anions, other than electron affinities, which can be accurately measured by photodetachment spectroscopy.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent survey of atomic and molecular electron affinities determined using photoelectron techniques, see J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer III, S. Nandi, and G. B. Ellison, Chem. Rev. (to be published).

    Google Scholar 

  2. M. J. Travers, D. C. Cowles, and G. B. Ellison, Chem. Phys. Lett. 164, 449 (1989).

    Article  ADS  Google Scholar 

  3. S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark, J. Chem. Phys. 98, 800 (1993).

    Article  ADS  Google Scholar 

  4. I. Shavitt, Mol. Phys. 94, 3 (1998).

    Article  ADS  Google Scholar 

  5. D. Cremer, “Møller-Plesset Perturbation Theory,” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).

    Google Scholar 

  6. J. Gauss, “Coupled-cluster Theory,” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).

    Google Scholar 

  7. M. W. Schmidt and M. S. Gordon, Ann. Rev. Phys. Chem. 49, 233 (1998).

    Article  ADS  Google Scholar 

  8. K. Andersson, “Complete Active Space Self-consistent Field (CASSCF) Second Order Perturbation Theory (CASPT2),” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).

    Google Scholar 

  9. S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 95, 8227 (1991)

    Article  ADS  Google Scholar 

  10. X. Li and J. Paldus, J. Chem. Phys. 107, 6257 (1997).

    Article  ADS  Google Scholar 

  11. For a discussion of size extensivity, see For a discussion of size extensivity, see J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem. Symp. 10, 1 (1976)

    Article  Google Scholar 

  12. R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14, 561 (1978).

    Article  Google Scholar 

  13. J. Olsen, O. Christiansen, J. Olsen, and P. Jørgensen, J. Chem. Phys. 105, 5082 (1996)

    Google Scholar 

  14. O. Christiansen, J. Olsen, P. Jørgensen, H. Koch, and P.-A. Malmqvist, Chem. Phys. Lett. 261, 369 (1996)

    Article  ADS  Google Scholar 

  15. J. Olsen, P. Jørgensen, T. Helgaker, and O. Christiansen, J. Chem. Phys. 112, 9736 (2000)

    Article  ADS  Google Scholar 

  16. T. H. Dunning, Jr. and K. A. Peterson, J. Chem. Phys. 108, 4761 (1998)

    Article  ADS  Google Scholar 

  17. M. L. Leininger, W. D. Allen, H. F. Schaefer III, and D.C. Sherrill, J. Chem. Phys.112 9213(2000)

    Article  ADS  Google Scholar 

  18. See, e.g., T. H. Dunning, Jr., J. Phys. Chem. A 104, 9062 (2000) and references therein.

    Article  Google Scholar 

  19. See, e.g., R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989)

    Article  Google Scholar 

  20. T. J. Lee and G. E. Scuseria„ in Quantum Mechanical Calculations with Chemical Accuracy, ed. by S. R. Langhoff, (Kluwer Academic Publishers, Dordrecht, 1997).

    Google Scholar 

  21. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989)

    Article  ADS  Google Scholar 

  22. K. Raghavarchi, J. A. Pople, E. S. Replogle, and M. Head-Gordon, J. Phys. Chem. 94, 5579 (1990).

    Article  Google Scholar 

  23. T. H. Dunning, Jr., J. Chem. Phys. 90, 1002 (1989).

    Article  ADS  Google Scholar 

  24. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).

    Article  ADS  Google Scholar 

  25. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  ADS  Google Scholar 

  26. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).

    Article  ADS  Google Scholar 

  27. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995)

    Article  ADS  Google Scholar 

  28. K. A. Peterson and T. H. Dunning, Jr. (unpublished).

    Google Scholar 

  29. T. H. Dunning, Jr., K. A. Peterson, and D. E. Woon, “Basis Sets: Correlation Consistent,” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).

    Google Scholar 

  30. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, (Van Nostrand, Princeton, 1979).

    Google Scholar 

  31. H.-J. Werner, P. J. Knowles, R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Leininger, R. Lindh, A. W. Lloyd, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. A. Peterson, R. M. Pitzer, P. Pulay, G. Rauhut, M. SchĂĽtz, H. Stoll, A. J. Stone, and T. Thorsteinsspn, MOLPRO Quantum Chemistry Package 2000.1, 2000.

    Google Scholar 

  32. C. Hampel, K. A. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992)

    Article  ADS  Google Scholar 

  33. P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1994).

    Article  ADS  Google Scholar 

  34. R. J. Bartlett, in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).

    Google Scholar 

  35. W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, Chem. Phys. Lett. 187, 21 (1991).

    Article  ADS  Google Scholar 

  36. T. H. Dunning, Jr. and K. A. Peterson, J. Chem. Phys. 113, 7799 (2000).

    Article  ADS  Google Scholar 

  37. J. A. Sordo, J. Chem. Phys. 114, 1974 (2001).

    Article  ADS  Google Scholar 

  38. For a corresponding statistical analysis of atomization energies, see K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and W. Klopper, J. Chem. Phys. 112, 9229 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Dunning, T.H., Peterson, K.A., Van Mourik, T. (2003). Calculation of Electron Affinities. In: Guberman, S.L. (eds) Dissociative Recombination of Molecular Ions with Electrons. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0083-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0083-4_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4915-0

  • Online ISBN: 978-1-4615-0083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics