Vibrational Autoionization in Polyatomic Molecules

  • S. T. Pratt
  • J. A. Bacon
  • C. A. Raptis
Conference paper

Abstract

Molecular Rydberg states converging to vibrationally excited states of a given electronic state of the ion and having total energy greater than the lowest vibrational level of that electronic state of the ion can spontaneously ionize through the conversion of vibrational energy of the ion core into electronic, and ultimately translational energy, of the Rydberg electron. This process is known as vibrational autoionization.1 Vibrationally autoionizing resonances can be thought of as vibrationally excited Feshbach resonances in the scattering of electrons off molecular ions, and the decay process is closely related to the superelastic scattering of slow electrons off vibrationally excited ions. If they are coupled to a dissociative continuum, vibrationally autoionizing resonances can also play a role in dissociative recombination.

Keywords

Recombination Aniline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, New York, 1979).Google Scholar
  2. 2.
    R. S. Berry, J. Chem. Phys. 45, 1228 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    J. N. Bardsley, Chem. Phys. Lett. 1, 229 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    G. Herzberg and Ch. Jungen, J. Mol. Spectrosc. 41, 425 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    U. Fano, Phys. Rev. A 2, 353 (1970).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Ch. Jungen, Molecular Applications of Quantum Defect Theory (Institute of Physics, Philadelphia, 1996).MATHGoogle Scholar
  7. 7.
    J. A. Stephens and C. H. Greene, Phys. Rev. Lett. 72, 1624 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    J. A. Stephens and C. H. Greene, J. Chem. Phys. 102, 1579 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    M. S. Child and Ch. Jungen, J. Chem. Phys. 93, 7756 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    M. S. Child and W. L. Glab, J. Chem. Phys. 112, 3754 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    H. Matsui and E. R. Grant, J. Chem. Phys. 104, 42 (1996), and references therein.ADSCrossRefGoogle Scholar
  12. 12.
    E. E. Mayer, H. G. Hedderich, and E. R. Grant, J. Chem. Phys. 108, 1886 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    E. E. Mayer, H. G. Hedderich, and E. R. Grant, J. Chem. Phys. 108, 8429 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    J. A. Bacon and S. T. Pratt, J. Chem. Phys. 113, 7188 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    C. A. Raptis and S. T. Pratt, J. Chem. Phys. 113, 4190 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    G. Herzberg, Spectra of Diatomic Molecules. (Van Nostrand Reinhold, New York, 1950).Google Scholar
  17. 17.
    A. D. Walsh, J. Chem. Soc. London 1953, 2260 (1953).Google Scholar
  18. 18.
    R. S. Mulliken, J. Am. Chem. Soc. 86, 3183 (1964).CrossRefGoogle Scholar
  19. 19.
    R. S. Mulliken, J. Am. Chem. Soc. 88, 1849 (1966).CrossRefGoogle Scholar
  20. 20.
    R. S. Mulliken, J. Am. Chem. Soc. 91, 4615 (1969).CrossRefGoogle Scholar
  21. 21.
    C. E. Moore, Atomic Energy Levels, Vol. I. (NSRDS, Washington, D.C., 1971).Google Scholar
  22. 22.
    M. N. R. Ashfold, R. N. Dixon, and R. J. Stickland, Chem. Phys. 88, 463 (1984).CrossRefGoogle Scholar
  23. 23.
    G. Herzberg, Molecular Spectra and Molecular Structure, III (Van Nostrand Reinhold, New York, 1966).Google Scholar
  24. 24.
    J. M. Allen, M. N. R. Ashfold, R. J. Stickland, and C. M. Western, Mol. Phys. 74, 49 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    A. Giusti-Suzor and Ch. Jungen, J. Chem. Phys. 80, 986 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • S. T. Pratt
    • 1
  • J. A. Bacon
    • 1
  • C. A. Raptis
    • 1
  1. 1.Argonne National LaboratoryArgonne, IllinoisUSA

Personalised recommendations