Advertisement

Mutated Tyrosine Kinases As Therapeutic Targets In Myeloid Leukemias

  • Martin Sattler
  • Blanca Scheijen
  • Ellen Weisberg
  • James D. Griffin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 532)

Abstract

Tyrosine kinases are commonly mutated and activated in both acute and chronic myeloid leukemias. Here, we review the functions, signaling activities, mechanism of transformation, and therapeutic targeting of two prototypic tyrosine kinase oncogenes, BCR-ABL and FLT3, associated with chronic myeloid leukemia (CML) and acute myeloid leukemia (AML), respectively. BCR-ABL is generated by the Philadelphia chromosome translocation between chromosomes 9 and 22, creating a chimeric oncogene in which theBCRandc-ABLgenes are fused. The product of this oncogene, BCR-ABL, has elevated ABL tyrosine kinase activity and transforms hematopoietic cells by exerting a wide variety of biological effects, including reduction in growth factor dependence, enhanced viability, and altered adhesion of chronic myelocytic leukemia (CML) cells. Elevated tyrosine kinase activity of BCR-ABL is critical for activating downstream signalling cascades and for all aspects of transformation, explaining the remarkable clinical efficacy of the tyrosine kinase inhibitor, imatinib mesylate (STI571). By comparison, FLT3 is mutated in about one third of all cases of AML, most often through a mechanism that involves an internal tandem duplication (ITD) of a small number of amino acid residues in the juxtamembrane domain of the receptor. As is the case for BCR-ABL, these mutations activate the kinase activity constitutively, activate multiple signaling pathways, and result in an augmentation of proliferation and viability. Transformation by FLT3-ITD can readily be observed in murine models, and FLT3 cooperates with other types of oncogenes to create a fully transformed acute leukemia. FLT3 tyrosine kinase inhibitors are currently being evaluated in clinical trials and may be very useful therapeutic agents in AML

Keywords

Acute Myeloid Leukemia Chronic Myelogenous Leukemia Chronic Myelogenous Leukemia Cell Internal Tandem Duplication Breakpoint Cluster Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dash A. Gilliland DG. Molecular genetics of acute myeloid leukaemia. Baillieres Best Pract Res Clin Haematol. 2001;14:49–64.CrossRefGoogle Scholar
  2. 2.
    Gilliland DG. Hematologic malignancies. Curr Opin Hematol. 2001;8:189–191PubMedCrossRefGoogle Scholar
  3. 3.
    Li FP. Epidemiology of chronic leukemia, in Wiernik P.H., Canellos G.P., Kyle R.A., et al (eds). Neoplastic Disease of the Blood. New York, Churchill Livingstone. 1991:7–14Google Scholar
  4. 4.
    Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109PubMedGoogle Scholar
  5. 5.
    Kurzrock R, Shtalrid M, Romero P, Kloetzer WS, Talpas M, Trujillo JM, Blick M, Beran M,•Gutterman JU. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature. 1987;325:631–635.PubMedCrossRefGoogle Scholar
  6. 6.
    Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88:2410–2414.PubMedGoogle Scholar
  7. 7.
    Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G. Localization of the c-Abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature. 1983;306:239–242PubMedCrossRefGoogle Scholar
  8. 8.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the Bcr gene and its role in the Ph’ translocation. Nature. 1985;315:758–760PubMedCrossRefGoogle Scholar
  9. 9.
    Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific p210 protein is the product of the Bcr/Abl hybrid gene. Science. 1986;233:212–214PubMedCrossRefGoogle Scholar
  10. 10.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–554PubMedCrossRefGoogle Scholar
  11. 11.
    Fainstein E, Marcelle C, Rosner A, Canaani E, Gale RP, Dreazen O, Smith SD, Croce CM. A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature. 1987;330:386–388PubMedCrossRefGoogle Scholar
  12. 12.
    Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph’-positive CML from Ph’-positive ALL. Science. 1987;235:85–88PubMedCrossRefGoogle Scholar
  13. 13.
    Walker LC, Ganesan TS, Dhut S, Gibbons B, Lister TA, Rothbard J, Young BD. Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature. 1987;329:851–853PubMedCrossRefGoogle Scholar
  14. 14.
    Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R, Lawler SD, Groffen J, Foulkes JG, Greaves MF, et a. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature. 1987;325:635–637PubMedCrossRefGoogle Scholar
  15. 15.
    Kantarjian H, Faderl S, Talpaz M. Chronic Myelogenous Leukemia, in DeVita VT Jr, Hellman S, Rosenberg SA (eds). Cancer: Priniples and Practice of Oncology. Philadelphia, Lippincott Williams and Williams. 2001:2433–2447Google Scholar
  16. 16.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–566.PubMedCrossRefGoogle Scholar
  17. 17.
    Donato NJ, Talpaz M. Clinical use of tyrosine kinase inhibitors: therapy for chronic myelogenous leukemia and other cancers. Clin Cancer Res. 2000;6:2965–2966.PubMedGoogle Scholar
  18. 18.
    Goldman JM. Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet. 2000;355:1031–1032.PubMedCrossRefGoogle Scholar
  19. 19.
    Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood. 1997;90:3691–3698.PubMedGoogle Scholar
  20. 20.
    Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood. 1997;90:4947–4952.PubMedGoogle Scholar
  21. 21.
    Wang WL, Healy ME, Sattler M, Verma S, Lin J, Maulik G, Stiles CD, Griffin JD, Johnson BE, Salgia R. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene. 2000;19:3521–3528.PubMedCrossRefGoogle Scholar
  22. 22.
    Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB. Abl protein-tyrosine kinase inhibitor STI571 inhibits In vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000;295:139–145.PubMedGoogle Scholar
  23. 23.
    Krystal GW, Honsawek S, Litz J, Buchdunger E. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res. 2000;6:3319–3326.PubMedGoogle Scholar
  24. 24.
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by Sil 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–932.PubMedGoogle Scholar
  25. 25.
    Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–293PubMedCrossRefGoogle Scholar
  26. 26.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature. 1987;328:342­-344PubMedCrossRefGoogle Scholar
  27. 27.
    Verfaillie CM, McCarthy JB, McGlave PB. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. J Clin Invest. 1992;90:1232–1241PubMedCrossRefGoogle Scholar
  28. 28.
    Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM. Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc Natl Acad Sci USA. 1995;92:10282–10286PubMedCrossRefGoogle Scholar
  29. 29.
    McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol. 1993;13:7587–7595PubMedGoogle Scholar
  30. 30.
    Golub TR, Goga A, Barker GF, Afar D, Mclaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG. Oligomerization of the Abl tyrosine kinase by the Ets protein Tel in human leukemia. Mol Cell Biol. 1996;16:4107–4116PubMedGoogle Scholar
  31. 31.
    Pendergast AM, Quilliam LA, Cripe LD, Sassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J, et a. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 1993;75:175–185PubMedGoogle Scholar
  32. 32.
    Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 1994;13:764–773PubMedGoogle Scholar
  33. 33.
    Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of Bcr-Abl point mutants with c-Myc. Science. 1994;264:424–426PubMedCrossRefGoogle Scholar
  34. 34.
    Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G, Di Fiore PP. Signaling from Ras to Rac and beyond: not just a matter of GEFs. Embo J. 2000;19:2393–2398.PubMedCrossRefGoogle Scholar
  35. 35.
    Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood. 2000;96:664–670.PubMedGoogle Scholar
  36. 36.
    Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-Terminal Coiled-Coil Domain and Tyrosine 177 Play Important Roles in Induction of a Myeloproliferative Disease in Mice by Bcr-Abl. Mol Cell Biol. 2001;21:840–853.PubMedCrossRefGoogle Scholar
  37. 37.
    Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell. 2002;1:479–492PubMedCrossRefGoogle Scholar
  38. 38.
    Wang JY, Ledley F, Goff S, Lee R, Groner Y, Baltimore D. The mouse c-abl locus: molecular cloning and characterization. Cell. 1984;36:349–356PubMedCrossRefGoogle Scholar
  39. 39.
    Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell. 1991;65:1153­-1163PubMedCrossRefGoogle Scholar
  40. 40.
    Schwartzberg PL, Stall AM, Hardin JD, Bowdish KS, Humaran T, Boast S, Harbison ML, Robertson EJ, Goff SP. Mice homozygous for the ABLm1 mutation show poor viability and depletion of selected B and T cell populations. Cell. 1991;65:1165–1175PubMedCrossRefGoogle Scholar
  41. 41.
    Li B, Boast S, de los Santos K, Schieren I, Quiroz M, Teitelbaum SL, Tondravi MM, Goff SP. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet. 2000;24:304–308.PubMedCrossRefGoogle Scholar
  42. 42.
    Kharbanda S, Ren R, Pandey P, Shafman TD, Feller SM, Weichselbaum RR, Kufe DW. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature. 1995;376:785–788PubMedCrossRefGoogle Scholar
  43. 43.
    Welch PJ, Wang JY. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell. 1993;75:779–790PubMedCrossRefGoogle Scholar
  44. 44.
    Yuan ZM, Huang YY, Whang Y, Sawyers C, Weichselbaum R, Kharbanda S, Kufe D. Role for c-Abl tyrosine kinase in growth arrest response to dna damage. Nature. 1996;382:272–274PubMedCrossRefGoogle Scholar
  45. 45.
    Pendergast AM, Gishizky ML, Havlik MH, Witte ON. SH1 domain autophosphorylation of p210 BCR/ABL is required for transformation but not growth factor independence. Mol Cell Biol. 1993;13:1728–1736PubMedGoogle Scholar
  46. 46.
    Barila D, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet. 1998;18:280–282.PubMedCrossRefGoogle Scholar
  47. 47.
    Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI­571 inhibition of abelson tyrosine kinase. Science. 2000;289:1938–1942.PubMedCrossRefGoogle Scholar
  48. 48.
    Jackson PK, Paskind M, Baltimore D. Mutation of a phenylalanine conserved in SH3-containing tyrosine kinases activates the transforming ability of c-Abl. Oncogene. 1993;8:1943–1956PubMedGoogle Scholar
  49. 49.
    Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F, Witte ON. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci USA. 1991;88:5927–5931PubMedCrossRefGoogle Scholar
  50. 50.
    Oda T, Tamura S, Matsuguchi T, Griffin JD, Druker BJ. The SH2 domain of abl is not required for factor-independent growth induced by bcr-abl in a murine myeloid cell line. Leukemia. 1995;9:295–301PubMedGoogle Scholar
  51. 51.
    Maria RL, Vanetten RA. The SH2 domain of p210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood. 1995;86:3897–3904Google Scholar
  52. 52.
    Anderson SM, Mladenovic J. The BCR-ABL oncogene requires both kinase activity and Src-homology 2 domain to induce cytokine secretion. Blood. 1996;87:238–244PubMedGoogle Scholar
  53. 53.
    Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell. 1995;82:981–988PubMedCrossRefGoogle Scholar
  54. 54.
    Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA. The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood. 2001;97:4–13.PubMedCrossRefGoogle Scholar
  55. 55.
    ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of Crkl in philadelphia(+) leukemia. Blood. 1994;84:1731–1736PubMedGoogle Scholar
  56. 56.
    Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD,.Druker BJ. Crkl is the major tyrosine­phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem. 1994;269:22925–22928PubMedGoogle Scholar
  57. 57.
    Nichols GL, Raines MA, Vera JC, Lacomis L, Tempst P, Golde DW. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood. 1994;84:2912–2918PubMedGoogle Scholar
  58. 58.
    Mayer BJ, Hanafusa H. Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation. J Virol. 1990;64:3581-­3589PubMedGoogle Scholar
  59. 59.
    Senechal K, Halpern J, Sawyers CL. The Crkl adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem. 1996;271:23255–23261PubMedCrossRefGoogle Scholar
  60. 60.
    Heaney C, Kolibaba K, Bhat A, Oda T, Ohno S, Fanning S, Druker BJ. Direct binding of CRKL to BCR­ABL is not required for BCR-ABL transformation. Blood. 1997;89:297–306.PubMedGoogle Scholar
  61. 61.
    McWhirter J, Wang J. Activation of tyrosine kinase and microfilament-binding functions ofc-AblbyBcrsequences inBcr IAblfusion proteins. Mol Cell Biol. 1991;11:1553–1565PubMedGoogle Scholar
  62. 62.
    McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 1993;12:1533–1546PubMedGoogle Scholar
  63. 63.
    Heisterkamp N, Voncken JW, Senadheera D, Gonzalez-Gomez I, Reichert A, Haataja L, Reinikainen A, Pattengale PK, Groffen J. Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. Blood. 2000;96:2226–2232.PubMedGoogle Scholar
  64. 64.
    Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by BCR/ABL. J Exp Med. 1996;183:811–820PubMedCrossRefGoogle Scholar
  65. 65.
    Shuai K, Halpern J, Tenhoeve J, Rao XP, Sawyers CL. Constitutive activation of StatS by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene. 1996;13:247–254PubMedGoogle Scholar
  66. 66.
    Ilaria RL, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem. 1996;271:31704–31710.PubMedCrossRefGoogle Scholar
  67. 67.
    Okuda K, Golub TR, Gilliland DG, Griffin JD. p210BCR/ABL, p190BCR/ABL, and TEL/ABL activate similar signal transduction pathways in hematopoietic cell lines. Oncogene. 1996;13:1147–1152.PubMedGoogle Scholar
  68. 68.
    Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS, Peeters P, Van Rompaey L, Van Etten RA, Ilaria R, Marynen P, Gilliland DG. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo-and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. Embo J. 1998;17:5321–5333.PubMedCrossRefGoogle Scholar
  69. 69.
    Mui A, Wakao H, Kinoshita T, Kitamura T, Miyajima A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated STAT5 - role of STAT5 in proliferation. EMBO J. 1996;15:2425–2433PubMedGoogle Scholar
  70. 70.
    Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994;76:821–828.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin JX, Mietz J, Modi WS, John S, Leonard WJ. Cloning of human Stat5B. Reconstitution of interleukin­2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J Biol Chem. 1996;271:10738–10744.PubMedCrossRefGoogle Scholar
  72. 72.
    Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Haldosen LA, Norstedt G, Levy D, Groner B. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. Embo J. 1995;14:2005–2013.PubMedGoogle Scholar
  73. 73.
    Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, Saris C, Tempst P. Ihle JN, Schindler C. Interleukin-3 signals through multiple isoforms of StatS. Embo J. 1995;14:1402–1411.PubMedGoogle Scholar
  74. 74.
    Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–850.PubMedCrossRefGoogle Scholar
  75. 75.
    Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for StatS in Bcl-X(L) induction. Cell. 1999;98:181–191.PubMedCrossRefGoogle Scholar
  76. 76.
    Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD, Rothammer K, Roussel MF, Ihle JN. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl-and bcr/abl-induced transformation are independent of stat5. Blood. 2000;96:2277–2283.PubMedGoogle Scholar
  77. 77.
    Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood. 2000;95:2118–2125.PubMedGoogle Scholar
  78. 78.
    Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M, Miyajima A, Kitamura T. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol. 1998;18:3871–3879.PubMedGoogle Scholar
  79. 79.
    Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch K-P, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse III. HC, Ozato K, Horak I. Immunodefiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell. 1996;87:307–317PubMedCrossRefGoogle Scholar
  80. 80.
    Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF, Rosenbauer F, Huhn D, Wittig B, Horak I, Neubauer A. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood. 1998;91:22–29.PubMedGoogle Scholar
  81. 81.
    Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol. 2000;20:1149–1161.PubMedCrossRefGoogle Scholar
  82. 82.
    Toker A. Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol Pharmacol. 2000;57:652–658.PubMedGoogle Scholar
  83. 83.
    Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999;274:8347–8350.PubMedCrossRefGoogle Scholar
  84. 84.
    Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct. 1998;27:503–528PubMedCrossRefGoogle Scholar
  85. 85.
    Lemmon MA, Ferguson KM, Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 1996;85:621–624.PubMedCrossRefGoogle Scholar
  86. 86.
    Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R. FYVE fingers bind PtdIns(3)P. Nature. 1998;394:432–433.PubMedCrossRefGoogle Scholar
  87. 87.
    Patki V, Lawe DC, Corvera S, Virbasius JV, Chawla A. A functional PtdIns(3)P-binding motif. Nature. 1998;394:433–434.PubMedCrossRefGoogle Scholar
  88. 88.
    Rameh LE, Chen CS, Cantley LC. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell. 1995;83:821–830PubMedCrossRefGoogle Scholar
  89. 89.
    Serve H, Hsu YC, Besmer P. Tyrosine residue 719 of the c-kit receptor is essential for binding of the p85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells. J Biol Chem. 1994;269:6026–6030PubMedGoogle Scholar
  90. 90.
    Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF. Structure of the insulin receptor substrate IRS-I defines a unique signal transduction protein. Nature. 1991;352:73–77PubMedCrossRefGoogle Scholar
  91. 91.
    Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, Xu G, Li IL, Prasad KV, Griffin JD. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3’ kinase pathway. Oncogene. 1996;12:839–846PubMedGoogle Scholar
  92. 92.
    Gadina M, Sudarshan C, Visconti R, Zhou YJ, Gu H, Neel BG, O’Shea JI. The docking molecule gab2 is induced by lymphocyte activation and is involved in signaling by interleukin-2 and interleukin-15 but not other common gamma chain-using cytokines. J Biol Chem. 2000;275:26959–26966.PubMedGoogle Scholar
  93. 93.
    Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH, Neel BG. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol. 2000;20:7109–7120.PubMedCrossRefGoogle Scholar
  94. 94.
    Kapeller R, Cantley LC. Phosphatidylinositol 3-kinase. [Review]. Bioessays. 1994;16:565–576CrossRefGoogle Scholar
  95. 95.
    Carpenter CL, Cantley LC. Phosphoinositide 3-kinase and the regulation of growth [Review]. Biochim Biophys Acta Reviews on Cancer. 1996;1288:16Google Scholar
  96. 96.
    Varticovski L, Daley GQ, Jackson P, Baltimore D, Cantley LC. Activation of phosphatidylinositol 3-kinase in cells expressing Abl oncogene variants. Mol Cell Biol. 1991;11:1107–1113PubMedGoogle Scholar
  97. 97.
    Skorski T, Kanakaraj P, Nieborowskaskorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B. Phosphatidylinositol-3 kinase activity is regulated by bcr/abl and is required for the growth of philadelphia chromosome-positive cells. Blood. 1995;86:726–736PubMedGoogle Scholar
  98. 98.
    Bedi A, Griffin CA, Barber JP, Vala MS, Hawkins AL, Sharkis SJ, Zehnbauer BA, Jones RJ. Growth factor-mediated terminal differentiation of chronic myeloid leukemia. Can Res. 1994;54:5535–5538Google Scholar
  99. 99.
    Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by Bcr-Abl in chronic myeloid leukemia. Blood. 1994;83:2038–2044PubMedGoogle Scholar
  100. 100.
    Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. Embo J. 1997;16:6151–6161.PubMedCrossRefGoogle Scholar
  101. 101.
    Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A. 1987;84:5034–5037.PubMedCrossRefGoogle Scholar
  102. 102.
    Staal SP, Hartley JW. Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med. 1988;167:1259–1264.PubMedCrossRefGoogle Scholar
  103. 103.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7:261–269.PubMedCrossRefGoogle Scholar
  104. 104.
    Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT. Dual role of phosphatidylinosito1–3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997;277:567–570.PubMedCrossRefGoogle Scholar
  105. 105.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–241.PubMedCrossRefGoogle Scholar
  106. 106.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–868.PubMedCrossRefGoogle Scholar
  107. 107.
    Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD. BCR/ABL regulates expression of the cyclin­dependent kinase inhibitor p27Kipl through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem. 2000;275:39223–39230.PubMedCrossRefGoogle Scholar
  108. 108.
    Jonuleit T, van der Kuip H, Miething C, Michels H, Hallek M, Duyster J, Aulitzky WE. Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood. 2000;96:1933–1939.PubMedGoogle Scholar
  109. 109.
    Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kaminen RA, Collard JG. Rho family proteins in cell adhesion and cell migration. Eur J Cancer. 2000;36:1269–1274.PubMedCrossRefGoogle Scholar
  110. 110.
    Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000;261:1–12.PubMedCrossRefGoogle Scholar
  111. 111.
    Skorski T, Wlodarski P, Daheron L, Salomoni P, Nieborowska-Skorska M, Majewski M, Wasik M, Calabretta B. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP- binding protein Rac. Proc Natl Acad Sci U S A. 1998;95:11858–11862.PubMedCrossRefGoogle Scholar
  112. 112.
    Krystal G. Lipid phosphatases in the immune system. Semin Immunol. 2000;12:397–403.PubMedCrossRefGoogle Scholar
  113. 113.
    Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM. Structure, function, and biology of SHIP proteins. Genes Dev. 2000;14:505–520.PubMedGoogle Scholar
  114. 114.
    Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA, Rohrschneider LR, Griffin JD. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol. 1999;19:7473–7480.PubMedGoogle Scholar
  115. 115.
    Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998;12:1610–1620.PubMedCrossRefGoogle Scholar
  116. 116.
    Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, Griffin JD. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem. 2000;275:24273–24278.PubMedCrossRefGoogle Scholar
  117. 117.
    Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995:18:775–794.PubMedCrossRefGoogle Scholar
  118. 118.
    Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry. 1998;37:5633–5642PubMedCrossRefGoogle Scholar
  119. 119.
    Monteiro HP, Stern A. Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways. [Review]. Free. Radic. Biol. Med. 1996;21:323–333Google Scholar
  120. 120.
    Ohba M, Shibanuma M, Kuroki T, Nose K. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell. Biol. 1994;126:1079–1088PubMedCrossRefGoogle Scholar
  121. 121.
    Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)­induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272:217–221PubMedCrossRefGoogle Scholar
  122. 122.
    Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H202for platelet-derived growth factor signal transduction. Science. 1995:270:296–299PubMedCrossRefGoogle Scholar
  123. 123.
    Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, Griffin JD. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood. 1999;93:2928–2935PubMedGoogle Scholar
  124. 124.
    Suh Y-A, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD. Cell transformation by the superoxide-generating oxidase Moxl. Nature. 1999;401:79–82PubMedCrossRefGoogle Scholar
  125. 125.
    Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–395.PubMedCrossRefGoogle Scholar
  126. 126.
    Rosnet O, Mattel MG, Marchetto S, Birnbaum D. Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics. 1991;9:380–385.PubMedCrossRefGoogle Scholar
  127. 127.
    Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 1991;65:1143–1152.PubMedCrossRefGoogle Scholar
  128. 128.
    Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y, Birg F, Birnbaum D. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993;82:1110–1119.PubMedGoogle Scholar
  129. 129.
    Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, Witte L, Burrow C, Ratajczak MZ, Gewirtz AM, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci U S A. 1994;91:459–463.PubMedCrossRefGoogle Scholar
  130. 130.
    Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, Kastelein R, Hudak S, Wagner J, Mattson J, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994;368:643–648.PubMedCrossRefGoogle Scholar
  131. 131.
    Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993;75:1157–1167.PubMedCrossRefGoogle Scholar
  132. 132.
    Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque MJ, Marchetto S, Tabilio A, Mannoni P, Birnbaum D. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood. 1992;80:2584–2593.PubMedGoogle Scholar
  133. 133.
    Carow CE, Kim E, Hawkins AL, Webb HD, Griffin CA, Jabs EW, Civin CI, Small D. Localization of the human stem cell tyrosine kinase-1 gene (FLT3) to 13q12-->q13. Cytogenet Cell Genet. 1995;70:255–257.PubMedCrossRefGoogle Scholar
  134. 134.
    Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–47PubMedCrossRefGoogle Scholar
  135. 135.
    Lisovsky M, Estrov Z, Zhang X, Consoli U, Sanchez-Williams G, Snell V, Munker R, Goodacre A, Savchenko V, Andreeff M. Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of BcI-2 and Bax. Blood. 1996;88:3987–3997.PubMedGoogle Scholar
  136. 136.
    McKenna HJ, Smith FO, Brasel K, Hirschstein D, Bernstein ID, Williams DE, Lyman SD. Effects of flt3 ligand on acute myeloid and lymphocytic leukemic blast cells from children. Exp Hematol. 1996;24:378–385.PubMedGoogle Scholar
  137. 137.
    Piacibello W, Gammaitoni L, Bruno S, Gunetti M, Fagioli F, Cavalloni G, Aglietta M. Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells. J Hematother Stem Cell Res. 2000;9:945–956.PubMedCrossRefGoogle Scholar
  138. 138.
    Hirayama F, Lyman SD, Clark SC, Ogawa M. The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood. 1995;85:1762–1768.PubMedGoogle Scholar
  139. 139.
    Hudak S, Hunte B, Culpepper J, Menon S, Hannum C, Thompson-Snipes L, Rennick D. FLT3/FLK2 ligand promotes the growth of murine stem cells and the expansion of colony-forming cells and spleen colony-forming units. Blood. 1995;85:2747–2755.PubMedGoogle Scholar
  140. 140.
    Jacobsen SE, Okkenhaug C, Myklebust J, Veiby OP, Lyman SD. The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors. J Exp Med. 1995;181:1357–1363.PubMedCrossRefGoogle Scholar
  141. 141.
    Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996;184:1953–1962.PubMedCrossRefGoogle Scholar
  142. 142.
    Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood. 2000;96:878–884.PubMedGoogle Scholar
  143. 143.
    Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C. Davoust J, Fay J, Palucka K. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol. 2000;165:566–572.PubMedGoogle Scholar
  144. 144.
    Dosil M, Wang S, Lemischka IR. Mitogenic signalling and substrate specificity of the Flk2/FIt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol. 1993;13:6572–6585.PubMedGoogle Scholar
  145. 145.
    Marchetto S, Fournier E, Beslu N, Aurran-Schleinitz T, Dubreuil P, Borg JP, Birnbaum D, Rosnet O. SHC and SHIP phosphorylation and interaction in response to activation of the FLT3 receptor. Leukemia. 1999;13:1374–1382.PubMedCrossRefGoogle Scholar
  146. 146.
    Rottapel R, Turck CW, Casteran N, Liu X, Birnbaum D, Pawson T, Dubreuil P. Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine FIt3 receptor tyrosine kinase. Oncogene.1994;9:1755–1765.PubMedGoogle Scholar
  147. 147.
    Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, Leonard WJ, Broxmeyer HE. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for FIt3-dependent signaling. J Exp Med. 2000;192:719–728.PubMedCrossRefGoogle Scholar
  148. 148.
    McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95:3489–3497.PubMedGoogle Scholar
  149. 149.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–1918.PubMedGoogle Scholar
  150. 150.
    Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, Tamura J, Shimazaki C, Matsue K, Kobayashi H, Arima N, Suzuki R, Morishita H, Saito H, Ueda R, Ohno R. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia. 1997;11:1447–1452.PubMedCrossRefGoogle Scholar
  151. 151.
    Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP. Prevalence and prognostic significance of FIt3 internal tandem duplication in pediatric acute myeloid eukemia. Blood. 2001;97:89–94.PubMedCrossRefGoogle Scholar
  152. 152.
    Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia. 2000;14:675–683.PubMedCrossRefGoogle Scholar
  153. 153.
    Xu F, Taki T, Yang HW, Hanada R, Hongo T, Ohnishi H, Kobayashi M, Bessho F, Yanagisawa M, Hayashi Y. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol. 1999;105:155–162.PubMedCrossRefGoogle Scholar
  154. 154.
    Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carroll AJ, Mrozek K, Vardiman JW, George SL, Kolitz JE, Larson RA, Bloomfield CD, Caligiuri MA. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61:7233–7239PubMedGoogle Scholar
  155. 155.
    Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a marine bone marrow transplant model. Blood. 2002;99:310–318PubMedCrossRefGoogle Scholar
  156. 156.
    Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113:983–988.PubMedCrossRefGoogle Scholar
  157. 157.
    Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434–2439.PubMedCrossRefGoogle Scholar
  158. 158.
    Tse KF, Novelli E, Civin CI, Bohmer FD, Small D. Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia. 2001;15:1001–1010.PubMedCrossRefGoogle Scholar
  159. 159.
    Levis M, Tse KF, Smith BD, Garrett E, Small D. A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood. 2001;98:885–887.PubMedCrossRefGoogle Scholar
  160. 160.
    Naoe T, Kiyoe H, Yamamoto Y, Minami Y, Yamamoto K, Ueda R, Saito H. FLT3 tyrosine kinase as a target molecule for selective anti leukemia therapy. Cancer Chemother Pharmacol. 2001;48:S27–S30PubMedCrossRefGoogle Scholar
  161. 161.
    Yu J-C, Apatira M, Li J, Kelly LM, Sternberg DW, Scarborough R, Pandey A, Seroogy J, Gilliland DG, Giese NA. FLT3 antagonism as a strategy for the treatment of acute myeloid leukemia (AML). Blood. 2001;98:721aGoogle Scholar
  162. 162.
    Allebach J, Levis M, Fai-Tse K, Jones-Brolin S, Ruggeri B, Dionne C, Small D. FLT3-targeted tyrosine kinase inhibitors inhibit proliferation, induce apoptosis, and improve survival in a murine leukemia model utilizing FLT3/ITD-transformed cells. Blood. 2001;89:118aGoogle Scholar
  163. 163.
    Levis MJ, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, Jones-Brolin S, Ruggeri B,Dionne C, Small D. FLT3-targeted inhibitors kill FLT3-dependent modeled cells, leukemia-derived cell lines, and primary AML blasts in vitro and in vivo. Blood. 2001:721aGoogle Scholar
  164. 164.
    O’Farrell A, Abrams T, Yuen H, Ngai T, Louie S, Wong L, Heinrich MC, Yee K, Smolich B, Murray L, Mendel D, Cherrington J. SUGEN compounds SU5416 and SU11248 inhibit Flt3 activity: therapeutic application in AML. Blood. 2001;89:118aGoogle Scholar
  165. 165.
    Yee K, O’Farrell A, Smolich B, Cherrington J, Wait CL, Griffith DJ, McGreevey LS, Heinrich MC. SU5416 and SU5614 inhibit wild-type and activated mutant FLT3 signaling in leukemia cells, Blood. 2001;89:838aGoogle Scholar
  166. 166.
    Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG, Griffin JD. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1:433–443PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Martin Sattler
    • 1
  • Blanca Scheijen
    • 1
  • Ellen Weisberg
    • 1
  • James D. Griffin
    • 1
    • 2
  1. 1.Department of Medical OncologyDana-Farber Cancer Institute, and the Dept. of MedicineBostonUSA
  2. 2.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA

Personalised recommendations