Skip to main content

Regulation of the Visual Cycle: Retinol Dehydrogenase and Retinol Fluorescence Measurements In Vertebrate Retina

  • Conference paper
Retinal Degenerations

Abstract

The initial and only light-activated step in vision is the photoisomerization of the ligand of the visual pigment,11-cis retinal to all-trans retinal, which occurs while being covalently bound to a lysine deep in the membrane region of the visual pigment. This event leads to the activation of the g-protein, transducin, which in turn activates c-gmp phosphodiesterase causing the destruction of c-gmp, the closure of cation channels in the plasma membrane of the photoreceptor, and eventually to the reduction in release of synaptic transmitter to other retinal neurons in the visual pathway. However, the visual pigment containing retinal in its all-trans form is now incapable of absorbing photons in the visual region of the spectrum and can no longer activate the transduction cascade. In order to do so, it must be regenerated into a form that contains 1 1-cis retinal. The biochemical reactions by which this occurs are collectively called the visual cycle. This complex series of reactions is initiated in the photoreceptors themselves, by the reduction of all-trans retinal to all-trans retinol by all-trans retinol dehydrogenase (rdh) and the cofactor nadph. All the subsequent steps in the regeneration of 11-cis retinal take place in the retinal pigment epithelium. Regenerated 11-cis retinal is then transported from the retinal pigment epithelium through the extracellular matrix back to the photoreceptor cells where it condenses with opsin to reform visual pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpern, M., Rushton, W. A. and Torii, S., 1970, The attenuation of rod signals by bleachings. J. Physiol. 207(2):449-61.

    PubMed  CAS  Google Scholar 

  • Blaner, W. S. and Churchich, J. E., 1980, The membrane bound retinol dehydrogenase from bovine rod outer segments. Biochem. Biophys. Res. Commun. 94(3):820-6.

    Article  PubMed  CAS  Google Scholar 

  • Boll, F., 1877, Zur anatomie und physiologie der retina. Arch. Anat. Physiol 4-36. [Translation: 1977, On the anatomy and physiology of the retina. Vis. Res. 17(11-12):1249-65].

    Google Scholar 

  • Cohen, G. B., Oprian, D. D., and Robinson, P. R., 1992, Mechanism of activation and inactivation of opsin: Role of GIul l3 and Lys296. Biochemistry. 31(50):12592-601.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E. J., 1959, The contributions of the oriented photosensitive and other molecules to the absorption of the whole retina. Proc. R. Soc. (Lond.) Series B. 150:78-94.

    Article  CAS  Google Scholar 

  • Fain, G. L., Matthews, H. R., and Cornwall, M. C., 1996, Dark adaptation in vertebrate photoreceptors. Trends Neurosci. 19(11):502-7.

    Article  PubMed  CAS  Google Scholar 

  • Fukada Y., and Yoshizawa, T., 1981, Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis. II. Biochim. Biophys. Acta. 675(2):195-200.

    Article  PubMed  CAS  Google Scholar 

  • Futterman, S., 1963, Metabolism of the retina. J. Biol. Chem. 238:1145-50.

    PubMed  CAS  Google Scholar 

  • Futterman, S., Hendrickson, A., Bishop, P. E., Rollins, M. H., and Vacano, E., 1970, Metabolism of glucose and reduction of retinaldehyde in retinal photoreceptors. J. Neurochem. 17(2):149-56.

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer, F., Huang, J., Lebioda, L., Saari, J. C., and Palczewski, K., 1998, Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J. Biol. Chem. 273(34):21790-9.

    Article  PubMed  CAS  Google Scholar 

  • Harosi, F. I., and MacNichol Jr. E. F., 1974, Dichroic microspectrophotometer: A computer-assisted, rapid, wavelength-scanning photometer for measuring linear dichroism in single cells. J. Opt. Soc. Am. 64(7):903-18.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, K. P., Pulvermuller, A., Buczylko, J., Van Hooser, P., and Paczewski, K., 1992, The role of arrestin and retinoids in the regeneration pathway of rhodopsin. J. Biol. Chem. 267(22):15701-6.

    PubMed  CAS  Google Scholar 

  • Hsu, S. C., and Molday, R. S., 1991, Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J. Biol. Chem. 266(32):21745-52.

    PubMed  CAS  Google Scholar 

  • Hsu, S. C., and Molday, R. S., 1994, Glucose metabolism in photoreceptor outer segments. Its role in phototransduction and in NADPH-requiring reactions. J. Biol. Chem. 269(27):17954-9.

    PubMed  CAS  Google Scholar 

  • Ishiguro, S., Suzuki, Y., Tamai, M., and Mizuno, K., 1991, Purification of retinol dehydrogenase from bovine retinal rod outer segments. J. Biol. Chem. 266(23):15520-4.

    PubMed  CAS  Google Scholar 

  • Jager, S., Palczewski, K., and Hofmann, K. P., 1996, Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry. 35(9):2901-8.

    Article  PubMed  CAS  Google Scholar 

  • Jin, J., Crouch, R. K., Corson, D. W., Katz, B. M., MacNichol, E. F., and Cornwall, M. C., 1993, Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron. 11(3):513-22.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, M. W., Liebman, P. A., 1977, Slow bleach-induced birefringence changes in rod outer segments. J. Physiol. 265(3):657-72.

    PubMed  CAS  Google Scholar 

  • Kaplan, M. W., 1985, Distribution and axial diffusion of retinol in bleached rod outer segments of frogs (Rana pipiens). Exp. Eye Res. 40(5):721.9.

    Article  PubMed  Google Scholar 

  • Kefalov, V. J., Crouch, R. K., and Cornwall, M. C., 2001, Role of nncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron. 29(3):749-55.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, C. M., 1973, Dichroism in rods during bleaching, In: Langer, H., editor, Biochemistry and Physiology of Visual Pigments. Berlin: Springer-Verlag. p. 307-12.

    Chapter  Google Scholar 

  • Kuhne W., 1879, Chemische vorgange in der netzhaut, (ed. Hermann, L.) Vol. 3 [Translation: Hubbard, R., Wald, G., 1977, Chemical processes in the retina. Vis. Res. 17(11-12):1269-316].

    Google Scholar 

  • Lamb, T. D., 1980, Spontaneous quantal events induced in toad rods by pigment bleaching. Nature. 287(5780):349-51.

    Article  PubMed  CAS  Google Scholar 

  • Li, X. B., Szerencsei, R. T., and Schnetkamp, P. P., 1994, The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods. Exp. Eye Res. 59(3):351-8.

    Article  PubMed  CAS  Google Scholar 

  • Liebman, P. A., 1969, Microspectrophotometry of retinal cells. Ann. N. Y. Acad. Sci. 157:250-64.

    Article  Google Scholar 

  • Lopez-Escalera, R., Li, X. B., and Szerencsei, P. P., 1991, Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods. Biochemistry. 30(37):8970-6.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, D. G., Ozga, G. W., and Solze, D. A., 1969, Evidence for glycolysis in bovine retinal microsomes and photoreceptor outer segments. Biochim. Biophys. Acta. 184(1):11-28.

    Article  PubMed  CAS  Google Scholar 

  • Melia Jr., T. J., Cowan, C. W., Angleson, J. K., and Wensel, T. G., 1997, A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. Biophys. J. 73(6): 3182-91.

    Article  PubMed  CAS  Google Scholar 

  • Nicotra, C., and Livrea, M. A., 1982, Retinol dehydrogenase from bovine retinal rod outer segments. Kinetic mechanism of the solubilized enzyme. J Biol. Chem. 257(19):11836-41.

    PubMed  CAS  Google Scholar 

  • Palczewski, K., Jager, S., Buczylko, J., Crouch, R. K., Bredberg, D. L., Hofmann, K. P., Asson-Batres, M. A., and Saari, J. C., 1994, Rod outer segment retinol dehydrogenase: Substrate specificity and role in phototransduction. Biochemistry. 33(46):13741-50.

    Article  PubMed  CAS  Google Scholar 

  • Paupoo, A. A., Mahroo, O. A., Friedburg, C., and Lamb, T. D., 2000, Human cone photoreceptor responses measured by the electroretinogram a-wave during and after exposure to intense illumination. J. Physiol. 529(Pt2):469-82.

    Article  PubMed  CAS  Google Scholar 

  • Rattner, A., Smallwood, P. M., and Nathans, J., 2000, Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J. Biol. Chem. 275(15):11034-43.

    Article  PubMed  CAS  Google Scholar 

  • Saari, J. C., Garwin, G. G., Van Hooser, J. P., and Palczewski K., 1998, Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vis. Res. 38(10):1325-33.

    Article  PubMed  CAS  Google Scholar 

  • Sakmar, T. P., Franke, R. R., and Khorana, H. G., 1989, Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Nat. Acad. Sci. U. S. A. 86(21):8309-13.

    Article  CAS  Google Scholar 

  • Schnetkamp, P. P., and Daemen, F. J., 1981, Transfer of high-energy phosphate in bovine rod outer segments. A nucleotide buffer system. Biochim. Biophys. Acta. 672(3):307-12.

    Article  PubMed  CAS  Google Scholar 

  • Sears, R. C., and Kaplan, M. W., 1989, Axial diffusion of retinol in isolated frog rod outer segments following substantial bleaches of visual pigment. Vis. Res. 29(11):1485-92.

    Article  PubMed  CAS  Google Scholar 

  • Surya, A., Foster, K. W., and Knox, B. E., 1995, Transducin activation by the bovine opsin apoprotein. J. Biot. Chem. 270(10): 5024-31.

    Article  CAS  Google Scholar 

  • Thomas, M. M., and Lamb, T. D., 1999, Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. J. Physiol. 518(Pí2): 479-96.

    Article  PubMed  CAS  Google Scholar 

  • Wald, G., 1935, Carotenoids and the visual cycle. J. Gen. PhysioL 19(2):351-71.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann, T., Wegmann, G., Moser, H., Huber, R., and Eppenberger, H. M., 1986, High content of creatine kinase in chicken retina: Compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc. Nat. Acad. Sci. U. S. A. 83(11):3816-9.

    Google Scholar 

  • Zimmerman, W. F., Yost, M. T., and Daemen, F. J., 1974, Dynamics and function of vitamin A compounds in rat retina after a small bleach of rhodopsin. Nature. 250(461):66-7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Cornwall, M.C., Tsina, E., Crouch, R.K., Wiggert, B., Chen, C., Koutalos, Y. (2003). Regulation of the Visual Cycle: Retinol Dehydrogenase and Retinol Fluorescence Measurements In Vertebrate Retina. In: LaVail, M.M., Hollyfield, J.G., Anderson, R.E. (eds) Retinal Degenerations. Advances in Experimental Medicine and Biology, vol 533. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0067-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0067-4_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4909-9

  • Online ISBN: 978-1-4615-0067-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics