Energy Depletion Hypothesis for Retinitis Pigmentosa

  • Marion S. Eckmiller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 533)


Enormous advances have been made in our understanding of human retinal degenerations, eg., numerous gene defects that cause retinitis pigmentosa (RP) have been identified and shown in many cases to encode photoreceptor cell proteins that participate in phototransduction (Clarke et al., 2000; Phelan and Bok, 2000; Pugh and Lamb, 2000). Although RP is genetically heterogeneous, the similar phenotype of typical RP (disturbed dark adaptation that progresses to night blindness, then complete blindness) has led researchers to speculate about a common underlying pathological mechanism. The equivalent light hypothesis for RP, formulated because constant or excessive light can cause photoreceptor degeneration in animals, has received some experimental support (Fain and Lisman, 1999). The pathological defect in RP has also been suggested to result from disturbance of the cytoskeletal systems in photoreceptor outer segments (OS) (Eckmiller, 1997), more specifically from disturbance of the special microtubulecontaining cytoskeletal system at the multiple incisures in many rod OS (Eckmiller, 2000). For unknown reasons, rods are more susceptible than cones to degeneration by both light and gene mutation. It is particularly puzzling that gene defects in myosin VIIa cause Usher syndrome (RP with hearing and vestibular defects) in humans but do not cause visual disturbances or blindness in mice or zebrafish (Gibson et al., 1995; Weil et al., 1995; Ernest et al., 2000). This puzzle has not been clarified by studies showing that myosin VIIa is localized in rodent rods and cones at the base of the ciliary axoneme, where it participates in transporting proteins (eg., opsin) into the OS (Liu et al., 1999).


Retinitis Pigmentosa Outer Segment Bright Light Night Blindness Photoreceptor Outer Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burns, M. E., and Baylor, D. A., 2001, Activation, deactivation, and adaptation in vertebrate photoreceptor cells, Ann. Rev. Neurosci. 24:779–805.PubMedCrossRefGoogle Scholar
  2. Clarke, G., Héon, E., and McInnes, R. R., 2000, Recent advances in the molecular basis of inherited photoreceptor degeneration, Clin. Genet. 57: 313-329. Google Scholar
  3. Cook, T. A., Ghomashchi, F., Gelb, M. H., Florio, S. K., and Beavo, J. A., 2001, The S subunit of type 6 phosphodiesterase reduces light-induced cGMP hydrolysis in rod outer segments, J. Biol. Chem. 276: 5248–5255. Google Scholar
  4. Diviani, D. and Scott, J. N., 2001, AKAP signaling complexes at the cytoskeleton, J. Cell Sci. 114: 1431–1437. Google Scholar
  5. Eckmiller, M. S., 1997, Morphogenesis and renewal of cone outer segments, Prog. Ret. Eye Res. 16:401–441.CrossRefGoogle Scholar
  6. Eckmiller, M. S., 1999, Diverse localization of cyclic nucleotide gated channels in the outer segments of rods and cones, in: Retinal Degenerative Diseases and Experimental Therapy, J. G. Hollyfield, R. E. Anderson, and M. M. Lavail, eds., Plenum Press, New York, pp. 449–460.CrossRefGoogle Scholar
  7. Eckmiller, M. S., 2000, Microtubules in a rod-specific cytoskeleton associated with outer segment incisures, Vis. Neurosci. 17:711–722.PubMedCrossRefGoogle Scholar
  8. Eckmiller, M. S., 2001, Myosin VIIa is associated with different cytoskeletal systems in the outer segments of rods and cones, [ARVO Abstract], Invest. Ophthalmol. Vis. Sci. 42(4): S296, Abstract nr 1599.Google Scholar
  9. Eckmiller, M. S., 2002, Calmodulin immunolocalization in outer segments of Xenopus laevis photoreceptors, Cell Tissue Res. 308:439–442.PubMedCrossRefGoogle Scholar
  10. Eckmiller, M. S., Wright, A. F., and Manson, F., 2002, Colocalization of RPGR, RPGRIP, and microtubules in different cytoskeletal systems in the outer segments of rods and cones, [abstract], Annual Meeting Abstract and Program Planner assessed at for Research in Vision and OphthalmologyAbstract 3739.Google Scholar
  11. Ernest, S., Rauch, G.-J., Haffter, P., Geisler, R., Petit, C., and Nicolson, T., 2000, Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness, Hum. Molec. Gen. 9:2189–2196.CrossRefGoogle Scholar
  12. Fain, G. L., and Lisman, J. E., 1999, Light, Ca++, and photoreceptor death: new evidence for the equivalent light hypothesis from arrestin knockout mice, Invest. Ophthalmol. Vis. Sci. 40:2770–2772.PubMedGoogle Scholar
  13. Fain, G. L., Metthews, H. R, Cornwall, M. C., and Koutalos, Y., 2001, Adaptation in vertebrate photoreceptors, Physiol. Rev. 81:117–151. PubMedGoogle Scholar
  14. Gibson, F., Walsh,J., Mburu, P., Varela, A., Brown, K. A., Antonio, M., Beisel, K. W., Steel, K. P., and Brown, S. D. M., 1995, A type VII myosin encoded by the mouse deafness gene Shaker-1,Nature 374: 62–64.PubMedCrossRefGoogle Scholar
  15. Hsu, S.-C., and Molday, R. S., 1994, Glucose metabolism in photoreceptor outer segments, J. Biol. Cheat. 269: 17954–17959. Google Scholar
  16. Ktissel-Andermann, P., El-Amraoui, A., Safieddine, S., Hardelin, J. P., Nouaille, S., Camonis, J., and Petit, C., 2000, Unconventional myosin VIIA is a novel A-kinase-anchoring protein, J. Biol. Chem. 275: 29654–9.CrossRefGoogle Scholar
  17. Liu, X., Udovichenko, I. P., Brown, S. D. M, Steel, K. P., and Williams, D. S., 1999, Myosin VIIa participates in opsin transport through the photoreceptor cilium, J. Neurosci. 19: 6267–6274.PubMedGoogle Scholar
  18. McGinnis, J. F., Matsumoto, B., Whelan, J. P., and Cao, W., 2002, Cytoskeleton participation in subcellular trafficking of signal transduction proteins in rod photoreceptor cells, J. Neurosci. Res. 67: 290–297.PubMedCrossRefGoogle Scholar
  19. Niemeyer, G., 1997, Glucose concentration and retinal function, Clinical Neurosci. 4: 327–335.Google Scholar
  20. Pepe, I. M., 2001, Recent advances in our understanding of rhodopsin and phototransduction, Prog. Ret. Eye Res. 20: 733–759.CrossRefGoogle Scholar
  21. Phelan, J. K., and Bok, D., 2000, A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes, Mol. Vis. 6: 116–124. PubMedGoogle Scholar
  22. Pugh, E. N., and Lamb, T. D., 2000, Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation, in: Handbook of Biological Physics Vol. 3, D. G. Stavenga, W. J. DeGrip, and E. N. Pugh, eds., Elsevier, Amsterdam, pp. 183–255.Google Scholar
  23. Rodieck, R. W., 1998, The First Steps in Seeing, Sinauer Associates, Massachusetts.Google Scholar
  24. Sickel, W., 1972, Retinal metabolism in dark and light, in: Physiology of Photoreceptor Organs, M. G. F. Fuortes, ed., Springer-Verlag, Berlin, pp. 667–727.CrossRefGoogle Scholar
  25. Sokolov, M., Lyubarsky, A. L., Strissel, K. J., Savchenko, A. B., Govardovskii, V. I., Pugh, E. N., and Arshaysky, V. Y., 2002, Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation, Neuron 33:95–106.CrossRefGoogle Scholar
  26. Stone, J., Maslim, J., Valter-Kosci, K., Mervin, K., Bowers, F., Chu, Y., Barnett, N., Provis, J., Lewis, G., Fisher, S. K., Bisti, S., Gargini, C., Cervetto, L., Merin, S., and Peer, J., 1999, Mechanisms of photoreceptor death and survival in mammalian retina, Prog. Ret. Eye Res. 18:689–735.CrossRefGoogle Scholar
  27. Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M. D., Kelley, P. M., Kimberling, W. J., Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K. P., Brown, S. D. M., and Petit, C., 1995, Defective myosin VIIA gene responsible for Usher syndrome type 1B, Nature 374:60–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Marion S. Eckmiller
    • 1
  1. 1.University Clinic, Heinrich Heine University of Düsseldorf, Postfach 101007Vogt Brain Research InstituteDüsseldorfGermany

Personalised recommendations