The Glycosylation of Airway Mucins in Cystic Fibrosis and its Relationship with Lung Infection by Pseudomonas aeruginosa

  • Philippe Roussel
  • Geneviève Lamblin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 535)


Cystic fibrosis (CF) is the most common severe genetic disease among Caucasians (1/2500–1/3000 births). It affects the exocrine glands and, in its most typical form, the main symptoms are a chronic pulmonary disease, a pancreatic insufficiency with fat malabsorption, a meconium ileus at birth (in 10% CF neonates) and, later on, cirrhosis and male sterility. The diagnosis is based on the elevation of sweat electrolytes (sweat chloride: ⁥70 mEq/L). In CF, there is a mucus hyper secretion as in chronic bronchitis. However, unlike chronic bronchitis, the CF lung infection is very peculiar and is characterized by infection due to Staphylococcus aureus in early life and, rapidly if not directly, by Pseudomonas aeruginosa which is almost impossible to eradicate and is responsible for most of the morbidity and mortality of the disease (Welsh et al., 1995).


Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator Chronic Bronchitis Cystic Fibrosis Patient Airway Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arora, S.K., Ritchings, B.W., Almira, E.C., Lory, S., and Ramphal, R., 1998, The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion, Infect Immun. 66:1000–1007.PubMedGoogle Scholar
  2. Barasch, J., and Al-Awqati, Q., 1993, Defective acidification of the biosynthetic pathway in cystic fibrosis, J Cell Sci Suppl. 17:229–233.PubMedGoogle Scholar
  3. Barasch, J., Kiss, B., Prince, A., Saiman, L., Gruenert, D., and Al-Awqati, Q., 1991, Defective acidification of intracellular organelles in cystic fibrosis, Nature. 352:70–73.PubMedCrossRefGoogle Scholar
  4. Blackwell, T.S., Stecenko, A.A., and Christman, J.W., 2001, Dysregulated NF-KB activation in cystic fibrosis: evidence for a primary inflammatory disorder, Am J Physiol Lung Cell Mol Physiol. 281:L69–L70.PubMedGoogle Scholar
  5. Bonfield, T.L., Panuska, J.R., Konstan, M.W., Hilliard, K.A., Hilliard, J.B., Ghnaim, H., and Berger, M., 1995, Inflammatory cytokines in cystic fibrosis lungs, Am J Respir Crit Care Med. 152:2111–2118.PubMedGoogle Scholar
  6. Borchers, M.T., Carty, M.P., and Leikauf, G.D., 1999, Regulation of human airway mucins by acrolein and inflammatory mediators, Am J Physiol. 276:L549–L555.PubMedGoogle Scholar
  7. Cantin, A., 1995, Cystic fibrosis lung inflammation: early, sustained, and severe, Am J Respir Crit Care Med. 151:939–941.PubMedGoogle Scholar
  8. Carnoy, C., Ramphal, R., Scharfman, A., Houdret, N., Lo-Guidice, J.-M., Klein, A., Galabert, C., Lamblin, G., and Roussel, P., 1993, Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa, Am J Respir Cell Mol Biol. 9:323–334.PubMedGoogle Scholar
  9. Carnoy, C., Scharfman, A., Van Brussel, E., Lamblin, G., Ramphal, R., and Roussel, P., 1994, Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoproteins, Infect Immun. 62:1896–1900.PubMedGoogle Scholar
  10. Chace, K.V., Flux, M., and Sachdev, G.P., 1985, Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients, Biochemistry. 24:7334–7341.PubMedCrossRefGoogle Scholar
  11. Cheng, P.W., Boat, T.F., Cranfill, K., Yankaskas, J.R., and Boucher, R.C., 1989, Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis, J Clin Invest. 84:68–72.PubMedCrossRefGoogle Scholar
  12. Chmiel, J.F., Berger, M., and Konstan, M.W., 2002, The role of inflammation in the pathophysiology of CF lung disease, Clin Rev Allergy Immunol. 23:5–27.PubMedCrossRefGoogle Scholar
  13. Couceiro, J.N., Paulson, J.C., and Baum, L.G., 1993, Influenza virus strains selectively recognize sialyloligosac-charides on human respiratory epithelium: the role of the host cell in selection of hemagglutinin receptor specificity, Virus Res. 29:155–165.PubMedCrossRefGoogle Scholar
  14. Cystic Fibrosis Mutation Data Base— Scholar
  15. Dabbagh, K., Takeyama, K., Lee, H.M., Ueki, LE, Lausier, J.A., and Nadel, J.A., 1999, IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo, J Immunol. 162:6233–6237.PubMedGoogle Scholar
  16. Dakin, C.J., Numa, A.H., Wang, H., Morton, J.R., Vertzyas, C.C., and Henry, R.L., 2002, Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis, Am J Respir Crit Care Med. 165:904–910, 904-10.PubMedGoogle Scholar
  17. Davril, M., Degroote, S., Humbert, P., Galabert, C., Dumur, V., Lafitte, J.-J., Lamblin, G., and Roussel, P., 1999, The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection, Glycobiology. 9:311–321.PubMedCrossRefGoogle Scholar
  18. Debailleul, V., Laine, A., Huet, G., Mathon, P., d’Hooghe, M.C., Aubert, J.-P, and Porchet, N., 1998, Human mucin genes MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC6 express stable and extremely large mRNAs and exhibit a variable length polymorphism—An improved method to analyze large mRNAs, J Biol Chem. 273:881–890.PubMedCrossRefGoogle Scholar
  19. de Bentzmann, S., Roger, P., Dupuit, F., Bajolet-Laudinat, O., Fuchey, C., Plotkowski, M.C., and Puchelle, E., 1996, Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells, Infect Immun. 64:1582–1588.PubMedGoogle Scholar
  20. De Graaf, T.W., Van der Stelt, M.E., Anbergen, M.G., and van Dijk, W., 1993, Inflammation-induced expression of sialyl-Lewis X-containing glycan structures on α1-acid glycoprotein (orosomucoid) in human sera, J Exp Med. 177:657–666.PubMedCrossRefGoogle Scholar
  21. Degroote, S., Maes, E., Humbert, P., Delmotte, P., Lamblin, G., and Roussel, P., 2003, Sulfated oligosaccharides isolated from the respiratory mucins of a secretor patient suffering from chronic bronchitis, Biochimie. 85:369–379PubMedCrossRefGoogle Scholar
  22. Delmotte, P., Degroote, S., Lafitte, J.-J., Lamblin, G., Perini, J.-M., and Roussel, P., 2002, Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa, J Biol Chem. 277:424–431.PubMedCrossRefGoogle Scholar
  23. Delmotte, P., Degroote, S., Merten, M., Bernigaud, A., Van Seuningen, I., Figarella, C., Roussel, P., and Perini, J.-M, 2001, Influence of culture conditions on the alpha 1,2-fucosyltransferase and MUC gene expression of a transformed cell line MM-39 derived from human tracheal gland cells, Biochimie. 83:749–755.PubMedCrossRefGoogle Scholar
  24. Devaraj, N., Sheykhnazari, M., Warren, W.S., Bhavanandan, V.P., 1994, Differential binding of Pseudomonas aeruginosa to normal and cystic fibrosis tracheobronchial mucins, Glycobiology. 4:307–316.PubMedCrossRefGoogle Scholar
  25. Devidas, S. and Guggino, W.B., 1997, CFTR: domains, structure, and function, Bioenerg Biomembr. 29:443–451.CrossRefGoogle Scholar
  26. Dosanjh, A., Lencer, W., Brown, D., Ausiello, D.A., and Stow, J.L., 1994, Heterologous expression of ΔF508 CFTR results in decreased sialylation of membrane glycoconjugates, Am J Physiol. 266:C360–C366.PubMedGoogle Scholar
  27. Engelhardt, J.F., Yankaskas, J.R., Ernst, S.A., Yang, Y., Marino, C.R., Boucher, R.C., Cohn, J.A., and Wilson, J.M., 1992, Submucosal glands are the predominant site of CFTR expression in the human bronchus, Nat Genet. 3:240–248.CrossRefGoogle Scholar
  28. Engelhardt, J.F., Zepeda, M., Cohn, J.A., Yankaskas, J.R., Wilson, J.M., 1994, Expression of the cystic fibrosis gene in adult human lung, J Clin Invest. 93:737–749.PubMedCrossRefGoogle Scholar
  29. Frates, R.C. Jr, Kaizu, T.T., and Last, J.A., 1983, Mucus glycoproteins secreted by respiratory epithelial tissue from cystic fibrosis patients, Pediatr Res. 17:30–34.PubMedCrossRefGoogle Scholar
  30. Glick, M.C., Kothari, V.A., Liu, A., Stoykova, L.I., and Scanlin, T.F., 2001, Activity of fucosyltransferases and altered glycosylation in cystic fibrosis airway epithelial cells, Biochimie. 83:743–747.PubMedCrossRefGoogle Scholar
  31. Jacquot, J., Puchelle, E., Hinnrasky, J., Fuchey, C., Bettinger, C., Spilmont, C., Bonnet, N., Dieterle, A., Dreyer, D, Pavirani, A. et al., 1993, Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands, Eur Respir J. 6:169–176.PubMedGoogle Scholar
  32. Jeffery, P.K. and Brain, A.P.R., 1988, Surface morphology of human airway mucosa: normal, carcinoma or cystic fibrosis, Scan Microsc. 2:345–351.Google Scholar
  33. Karpati, F., Hjelte, F.L., and Wretlind, B., 2000, TNF-alpha and IL-8 in consecutive sputum samples from cystic fibrosis patients during antibiotic treatment, Scand J Infect Dis. 32:75–79.PubMedCrossRefGoogle Scholar
  34. Konstan, M.W., Hilliard, K.A., Norvell, T.M., and Berger, M., 1994, Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung diseases suggest ongoing infection and inflammation, Am J Respir Crit Care Med. 150:448–454.PubMedGoogle Scholar
  35. Krivan, H.C., Ginsburg, V., Roberts, D.D., 1988, Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriao-sylceramide (asialo GM2), Arch Biochem Biophys. 260:493–496.PubMedCrossRefGoogle Scholar
  36. Lamblin, G., Degroote, S., Perini, J.-M., Delmotte, P., Scharfman, A., Davril, M., Lo-Guidice J.-M., Houdret, N., Dumur, V., Klein, A., and Roussel, P., 2001, Human airway mucin glycosylation: a combinatory of carbohydrate determinants which vary in cystic fibrosis, Glycoconj J. 18:661–684.PubMedCrossRefGoogle Scholar
  37. Lamblin, G., Lafitte, J.-J., Lhermitte, M., Degand, P., and Roussel, P., 1977, Mucins from cystic fibrosis sputum, Mod Probl Paediat. 19:153–164.Google Scholar
  38. Levine, S.J., Larivee, P., Logun, C., Angus, C.W., Ognibene, F.P., and Shelhamer, J.H., 1995, Tumor necrosis factor-α induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells, Am J Respir Cell Mol Biol. 12:196–204.PubMedGoogle Scholar
  39. Lo-Guidice, J.-M., Herz, H., Lamblin, G., Plancke, Y., Roussel, P., and Lhermitte, M., 1997, Structures of sulfated oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b-) patient suffering from chronic bronchitis, Glycoconj J. 14:113–125.PubMedCrossRefGoogle Scholar
  40. Lo-Guidice, J.-M., Merten, M.D., Lamblin, G., Porchet, N., Houvenaghel, M.-C., Figarella, C., Roussel, P., and Perini, J.-M., 1997, Mucins secreted by a transformed cell line derived from human tracheal gland cells, Biochem J. 326:431–437.PubMedGoogle Scholar
  41. Lo-Guidice, J.-M., Wieruszewski, J.-M., Lemoine, J., Verbert, A., Roussel, P., and Lamblin, G., 1994, Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis, J Biol Chem. 269:18794–18813.PubMedGoogle Scholar
  42. Longphre, M., Li, D., Gallup, M., Drori, L., Ordonez, C.L., Redman, T, Wenzel, S., Bice, D.E., Fahy, J.V., and Basbaum, C., 1999, Allergen-induced IL-9 directly stimulates mucin transcription in epithelial cells, J Clin Invest. 104:1375–1382.PubMedCrossRefGoogle Scholar
  43. Louahed, J., Toda, M., Jen, J., Hamid, Q., Renauld, J.C., Levitt, R.C., and Nicolaides, N.C., 2000, Interleukin-9 upregulates mucus expression in the airways, Am J Respir Cell Mol Biol. 22:649–656.PubMedGoogle Scholar
  44. Lukacs, N.W., Strieter, R.M., Chensue, S.W., Widmer, M., and Kunkel, S.L., 1995, TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation, J Immunol. 154:5411–5417.PubMedGoogle Scholar
  45. McNamara, N. and Basbaum, C., 2001, Signaling networks controlling mucin production in response to Gram-positive and Gram-negative bacteria, Glycoconj J. 18:715–722.PubMedCrossRefGoogle Scholar
  46. Matsui, H., Davis, C.W., Tarran, R., and Boucher, R.C., 2000, Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia, J Clin Invest. 105:1418–1427.CrossRefGoogle Scholar
  47. Mohapatra, N.K., Cheng, P.W., Parker, J.C., Paradiso, A.M., Yankaskas, J.R., Boucher, R.C., and Boat, T.F., 1995, Alteration of sulfation of glycoconjugates, but not sulfate transport and intracellular inorganic sulfate content in cystic fibrosis airway epithelial cells, Pediatr Res. 38:42–48.PubMedCrossRefGoogle Scholar
  48. Moniaux, N., Escande, F., Porchet, N., Aubert, J.-P., and Batra, S.K., 2001, Structural organization and classification of the mucin genes, Front Biosci. 6:d1192–1206.PubMedCrossRefGoogle Scholar
  49. Morelle, W., Sutton-Smith, M, Morris, H.R., Davril, M., Roussel, P., and Dell, A., 2001, FAB-MS characterization of sialyl Lewisx determinants on polylactosamine chains of human airway mucins secreted by patients suffering from cystic fibrosis or chronic bronchitis, Glycoconj J. 18:699–708.PubMedCrossRefGoogle Scholar
  50. Oceandy, D., McMorran, B.J., Smith, S.N., Schreiber, R., Kunzelmann, K., Alton, E.W., Hume, D.A., and Wainwright, B.J., 2002, Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities, Hum Mol Genet. 11:1059–1067.PubMedCrossRefGoogle Scholar
  51. Osika, E., Cavaillon, J.-M., Chadelat, K., Boule, M., Fitting, C., Tournier, G., and Clement, A., 1999, Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease, Eur Respir J. 14:339–346.PubMedCrossRefGoogle Scholar
  52. Pasyk, E.A. and Foskett, J.K., 1997, Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3′-phosphate 5′-phosphosulfate channels in endoplasmic reticulum and plasma membranes, J Biol Chem. 272:7746–7751.PubMedCrossRefGoogle Scholar
  53. Perez-Vilar, J., Randell, S.H., and Boucher, R., 2002, The cys subdomains of human gel-forming mucins are C-mannosylated domains involved in weak protein-protein interactions, Pediatric Pulmonol. Suppl 24:190.Google Scholar
  54. Perrais, M., Pigny, P., Copin, M.-C., Aubert, J.-P, and Van Seuningen, I., 2002, Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/ Ras/Raf/extracellular signal-regulated kinase cascade and Spl, J Biol Chem. 277:32258–32267.PubMedCrossRefGoogle Scholar
  55. Poschet, J.F., Boucher, J.C., Tatterson, L., Skidmore, J., Van Dyke, R.W., and Deretic, V., 2001, Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung, Proc Natl Acad Sci USA. 98:13972–13977.PubMedCrossRefGoogle Scholar
  56. Ramphal, R. and Arora, S.K., 2001, Recognition of mucin components by Pseudomonas aeruginosa, Glycoconj J. 18:709–713.PubMedCrossRefGoogle Scholar
  57. Ramphal, R., Carnoy, C., Fievre, S., Michalski, J.-C., Houdret, N., Lamblin, G., Strecker, G., and Roussel, P., 1991a, Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Galβ1-3GlcNAc) or type 2 (Galβ1-4GlcNAc) disaccharide units, Infect Immun. 59:700–704.PubMedGoogle Scholar
  58. Ramphal, R., Houdret, N., Koo, L., Lamblin, G., and Roussel, P., 1989, Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa of patients with cystic fibrosis and chronic bronchitis, Infect Immun. 57:3066–30671.PubMedGoogle Scholar
  59. Ramphal, R., Koo, L., Ishimoto, K.S., Torten, P.A., Lara, J.C., and Lory, S., 1991b, Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin, Infect Immun. 59:1307–1311.PubMedGoogle Scholar
  60. Ramphal, R., Small, P.M., Shands, J.W. Jr, Fischlschweiger, W., and Small, P.A. Jr, 1980, Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect Immun. 27:614–619.PubMedGoogle Scholar
  61. Ramphal, R. and Vishwanath, S., 1987, Why is Pseudomonas the colonizer and why does it persist, Infection. 15:281–287.PubMedCrossRefGoogle Scholar
  62. Rhim, A.D., Stoykova, L., Glick, M.C., and Scanlin, T.F., 2001, Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell, Glycoconj J. 8:649–659CrossRefGoogle Scholar
  63. Riordan, J.R., 1999, Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein, Am J Hum Genet. 64:1499–1504.PubMedCrossRefGoogle Scholar
  64. Rosenstein, I.J., Yuen, C.T., Stoll, M.S., and Feizi, T, 1992, Differences in the binding specificities of Pseudomonas aeruginosa M35 and Escherichia coli C600 for lipid-linked oligosaccharides with lactose-related core regions, Infect Immun. 60:5078–5084.PubMedGoogle Scholar
  65. Roussel, P., Lamblin, G., Degand, P., Walker-Nasir, E., and Jeanloz, R.W., 1975, Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis, J Biol Chem. 250:2114–2122.PubMedGoogle Scholar
  66. Saba, S., Soong, G., Greenberg, S., and Prince, A., 2002, Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways, Am J Respir Cell Mol Biol. 27:561–567.PubMedGoogle Scholar
  67. Saiman, L. and Prince, A., 1993, Pseudomonas aeruginosa pili binds asialo-GM1 which is increased at the surface of cystic fibrosis epithelial cells, J Clin Invest. 92:1875–1880.PubMedCrossRefGoogle Scholar
  68. Sajjan, U., Thanassoulis, G., Cherapanov, V., Lu, A., Sjolin, C., Steer, B., Wu, Y.J., Rotstein, O.D., Kent, G., McKerlie, C., Forstner, J., and Downey, P., 2001, Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr -/- mice, Infect Immun. 69:5138–5150.PubMedCrossRefGoogle Scholar
  69. Scharfman, A., Arora, S.K., Delmotte, P., Van Brussel, E., Mazurier, J., Ramphai, R., and Roussel, P., 2001, Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa, Infect Immun. 69:5243–5248.PubMedCrossRefGoogle Scholar
  70. Scharfman, A., Degroote, S., Beau, J., Lamblin, G., Roussel, P., and Mazurier, J., 1999, Pseudomonas aeruginosa binds to neoglycoconjugates bearing mucin carbohydrate determinants and predominantly to sialyl-Lewis x conjugates. Glycobiology. 9:757–764.PubMedCrossRefGoogle Scholar
  71. Scharfman, A., Delmotte, P., Beau, J., Lamblin, G., Roussel, P., and Mazurier, J., 2000, Sialyl-Le(x) and sulfo-sialyl-Le(x) determinants are receptors for P. aeruginosa. Glycoconj J. 10:735–740.CrossRefGoogle Scholar
  72. Seksek, O., Biwersi, J., and Verkman, A.S., 1996, Evidence against defective trans-Golgi acidification in cystic fibrosis, J Biol Chem. 271:15542–15548.PubMedCrossRefGoogle Scholar
  73. Sheth, H.B., Lee, K.K., Wong, W.Y., Srivastava, G., Hindsgaul, O., Hodges, R.S., Paranchych, W., and Irvin, R.T., 1994, The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence beta GalNAc(1–4)betaGal found in glycosphingolipids asialo-GM1 and asialo-GM2, Mol Microbiol. 11:715–23202.PubMedCrossRefGoogle Scholar
  74. Shori, D.K., Genter, T., Hansen, J., Koch, C., Wyatt, H., Kariyawasam, H.H., Knight, R.A., Hodson, M.E., Kalogeridis, A., and Tsanakas, I., 2001, Altered sialyl-and fucosyl-linkage on mucins in cystic fibrosis patients promotes formation of the sialyl-Lewis X determinant on salivary MUC-5B and MUC-7, Pflugers Arch. 443Suppl:S55–S61.PubMedGoogle Scholar
  75. Simel, D.L., Mastin, J.P., Pratt, P.C., Wisseman, C.L., Shelburne, J.D., Spock, A., Ingram, P., 1984, Scanning electron microscopic study of the airways in normal children and in patients with cystic fibrosis and other lung diseases, Pediatr Pathol. 2:47–64.PubMedCrossRefGoogle Scholar
  76. van Heeckeren, A., Walenga, R., Konstan, M.W., Bonfield, T., Davis, P.B., and Ferkol, T., 1997, Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa, J Clin Invest. 100:2810–2815.PubMedCrossRefGoogle Scholar
  77. Welsh, M.J., Tsui, L.-C., Boat, T.F., and Beaudet, A.L., 1995, Cystic fibrosis, in: The metabolic and molecular bases of inherited disease. C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, eds., (McGraw-Hill Inc.) pp. 3799–3876.Google Scholar
  78. Zhang, Y., Doranz, B., Yankaskas, J.R., and Engelhardt, J.F., 1995, Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis, J Clin Invest. 96:2997–3004.PubMedCrossRefGoogle Scholar
  79. Zielenski, J. and Tsui, L.-C., 1995, Cystic fibrosis: genotypic and phenotypic variations, Annu Rev Genet. 29:777–807.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Philippe Roussel
    • 1
  • Geneviève Lamblin
    • 1
  1. 1.Département de Biochimie Faculté de MédecineUniversité de LilleLilleFrance

Personalised recommendations