Advertisement

O-GlcNAc Glycosylation and Neurological Disorders

  • Tony Lefebvre
  • Marie-Laure Caillet-Boudin
  • Luc Buée
  • André Delacourte
  • Jean-Claude Michalski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 535)

Abstract

O-GlcNAc: a glycosylation type analogous to phosphorylation—the Yin-Yang hypothesis.

Keywords

Diabetic Neuropathy Spinal Muscular Atrophy Okadaic Acid Hexosamine Pathway Hexosamine Biosynthetic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, C.S., Johnson, G.V., Cole, R.N., Dong, D.L., Lee, M., and Hart, G.W., 1996, The microtubule-associated protein Tau is extensively modified with O-linked N-acetylglucosamine, J Biol Chem. 271:28741–28744.PubMedCrossRefGoogle Scholar
  2. Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., Mclnnis, M.G., Go, R.C.P., Vekrellis, K., Selkoe, D.J., Saunders, A.J., and Tanzi, R.E., 2000, Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q, Science. 290:2302–2303.PubMedCrossRefGoogle Scholar
  3. Chang, W., Gruber, D., Chari, S., Kitazawa, H., Hamazumi, Y., Hisanaga, S., and Bulinski, J.C., 2001, Phosphorylation of MAP4 affects microtubule properties and cell cycle progression, J Cell Sci. 114:2879–2887.PubMedGoogle Scholar
  4. Chou, C.F., Smith, A.J., and Omary, M.B., 1992, Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18, J Biol Chem. 267:3901–3906.PubMedGoogle Scholar
  5. Cole, R.N. and Hart, G.W., 1999, Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions, J Neurochem. 73:418–428.PubMedCrossRefGoogle Scholar
  6. Cole, R.N. and Hart, G.W., 2001, Cytosolic O-glycosylation is abundant in nerve terminals, J Neurochem. 79:1080–1089.PubMedCrossRefGoogle Scholar
  7. Comer, F.I. and Hart, G.W., 2001, Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II, Biochemistry. 40:7845–7852.PubMedCrossRefGoogle Scholar
  8. Delacourte, A. and Buee, L., 2000, Tau pathology: a marker of neurodegenerative disorders, Curr Opin Neurol. 13:371–376.PubMedCrossRefGoogle Scholar
  9. Ding, M. and Vandre, D.D., 1996, High molecular weight microtubule-associated proteins contain O-linked-N-acetylglucosamine. J Biol Chem. 271:12555–12561.PubMedCrossRefGoogle Scholar
  10. Dong, D.L., Xu, Z.S., Chevrier, M.R., Cotter, R.J., Cleveland, D.W., and Hart, G.W., 1993, Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M., J Biol Chem. 268:16679–16687.PubMedGoogle Scholar
  11. Dong, D.L. and Hart, G.W., 1994, Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol, J Biol Chem. 269:19321–19330.PubMedGoogle Scholar
  12. Dong, D.L., Xu, Z.S., Hart, G.W., and Cleveland, D.W., 1996, Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H, J Biol Chem. 271:20845–20852.PubMedCrossRefGoogle Scholar
  13. Fernyhough, P., Gallagher, A., Averill, S.A., Priestley, J.V., Hounsom, L., Patel, J., and Tomlinson, D.R., 1999, Aberrant neurofilaments phosphorylation in sensory neurons of rats with diabetic neuropathy, Diabetes. 48:881–889.PubMedCrossRefGoogle Scholar
  14. Fernyhough, P. and Schmidt, R.E., 2002, Neurofilaments in diabetic neuropathy, Int Rev Neurobiol. 50:115–144.PubMedCrossRefGoogle Scholar
  15. Ferreira, A. and Rapoport, M., 2002, The synapsins: beyond the regulation of neurotransmitter release, Cell Mol Life Sci. 59:589–595.PubMedCrossRefGoogle Scholar
  16. Fletcher, B.S., Dragstedt, C., Notterpek, L., and Nolan, G.P., 2002, Functional cloning of SPIN-2, a nuclear anti-apoptotic protein with roles in cell cycle progression, Leukemia, 16:1507–1518.PubMedCrossRefGoogle Scholar
  17. Gao, Y., Wells, L., Comer, F.I., Parker, G.J., and Hart, G.W., 2001, Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain, J Biol Chem. 276:9838–9845.PubMedCrossRefGoogle Scholar
  18. Ghosh, S. and Cox, J.V., 2001, Dynamics of ankyrin-containing complexes in chicken embryonic erythroid cells: role of phosphorylation, Mol Biol Cell. 12:3864–3874.PubMedGoogle Scholar
  19. Griffith, L.S. and Schmitz, B., 1995, O-linked N-acetylglucosamine is upregulated in Alzheimer brains, Biochem Biophys Res Commun. 213:424–431.PubMedCrossRefGoogle Scholar
  20. Griffith, L.S. and Schmitz, B., 1999, O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to perrubations of phosphorylation, Eur J Biochem. 262:824–831.PubMedCrossRefGoogle Scholar
  21. Hao, W., Luo, Z., Zheng, L., Prasad, K., and Lafer, E.M., 1999, AP180 and AP-2 interact directly in a complex that cooperatively assembles clathrin, J Biol Chem. 274:22785–22794.PubMedCrossRefGoogle Scholar
  22. Haltiwanger, R.S., Holt, G.D., and Hart, G.W., 1990, Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase, J Biol Chem. 265:2563–2568.PubMedGoogle Scholar
  23. Haltiwanger, R.S., Blomberg, M.A., and Hart, G.W., 1992, Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-N-acetylglucosaminyltransferase, J Biol Chem. 267:9005–9013.PubMedGoogle Scholar
  24. Haltiwanger, R.S., Grove, K., and Philipsberg, G.A., 1998, Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate, J Biol Chem. 273:3611–3617.PubMedCrossRefGoogle Scholar
  25. Heininger, K., 2000, A unifying hypotheis of Alzheimer’s disease. IV Causation and sequence of events, Rev Neurosci. 11:213–328.PubMedGoogle Scholar
  26. Hoyez, S., 1998, Risk factors for Alzheimer’s disease during aging. Impacts of glucose/energy metabolism, J Neural Transm Suppl. 54:187–194.Google Scholar
  27. Kamemura, K., Hayes, B.K., Comer, F.I., and Hart, G.W., 2002, Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens, J Biol Chem. 277:19229–19235.PubMedCrossRefGoogle Scholar
  28. Konrad, R.J., Janowski, K.M., and Kudlow, J.E., 2000, Glucose and streptozotocin stimulate pl35 O-glycosylation in pancreatic islets, Biochem Biophys Res Commun. 267:26–32.PubMedCrossRefGoogle Scholar
  29. Konrad, R.J., Tolar, J.F., Hale, J.E., Knierman, M.D., Becker, G.W., and Kudlow, J.E., 2001, Purification of the O-glycosylated protein pl35 and identification as O-GlcNAc transferase, Biochem Biophys Res Commun. 288:1136–1140.PubMedCrossRefGoogle Scholar
  30. Konrad, R.J., Zhang, F., Hale, J.E., Knierman, M.D., Becker, G.W., and Kudlow, J.E., 2002, Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase, Biochem Biophys Res Commun. 293:207–212.PubMedCrossRefGoogle Scholar
  31. Konrad, R.J. and Kudlow, J.E., 2002, The role of O-linked protein glycosylation in beta-cell dysfunction, Int J Mol Med. 10:535–539.PubMedGoogle Scholar
  32. Lefebvre, T., Alonso, C., Mahboub, S., Dupire, M.J., Zanetta, J.P., Caillet-Boudin, M.L., and Michalski, J.C., 1999, Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line, Biochim Biophys Acta. 1472:71–81.PubMedCrossRefGoogle Scholar
  33. Lefebvre, T., Ferreira, S., Dupond-Wallois, L., Bussière, T., Dupire, M.-J., Delacourte, A., Michalski, J.-C., and Caillet-Boudin, M.-L., 2003, Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—A role in nuclear localization, Biochim Biophys Acta. 1619(2):167–176.PubMedCrossRefGoogle Scholar
  34. Lubas, W.A. and Hanover, J.A., 2000, Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity, J Biol Chem. 275:10983–10988.PubMedCrossRefGoogle Scholar
  35. Miller, C.C., Ackerley, S., Brownlees, J., Grierson, A.J., Jacobsen, N.J., and Thornhill, P., 2002, Axonal transport of neurofilaments in normal and disease states, Cell Mol Life Sci. 59:323–330.PubMedCrossRefGoogle Scholar
  36. Murphy, J.E., Hanover, J.A., Froehlich, M., DuBois, G., and Keen, J.H., 1994, Clathrin assembly protein AP-3 is phosphorylated and glycosylated on the 50-kDa structural domain, J Biol Chem. 269:21346–21352.PubMedGoogle Scholar
  37. Myers, A., Holmans, P., Marshall, H., Kwon, J., Meyer, D, Ramic, D., Shears, S., Booth, J., Wavrant DeVrieze, F., Crook, R., Hamshere, M., Abraham, R., Tunstall, N., Rice, F., Carty, S., Lillystone, S., Kehoe, P., Rudrasingham, V., Jones, L., Lovestone, S., Perez-Tur, J., Williams, J., Owen, M.J., Hardy, J., and Goate, A.M., 2000, Susceptibility locus for Alzheimer disease on chromosome 10, Science. 290:2304–2305.PubMedCrossRefGoogle Scholar
  38. Nolte, D. and Muller, U., 2002, Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1, Mamm Genome. 13:62–64.PubMedCrossRefGoogle Scholar
  39. Patti, M.E., Virkamaki, A., Landaker, E.J., Kahn, C.R., and Yki-Jarvinen, H., 1999, Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle, Diabetes. 48:1562–1571.PubMedCrossRefGoogle Scholar
  40. Planel, E., Yasutake, K., Fujita, S.C., and Ishiguro, K., 2001, Inhibition of protein phosphatases 2A overrides Tau protein kinase I/glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in Tau hyperphosphorylation in the hippocampus of starved mouse, J Biol Chem. 276:34298–34306.PubMedCrossRefGoogle Scholar
  41. Purves, T., Middlemas, A., Agthong, S., Jude, E.B., Boulton, A.J., Fernyhough, P., and Tomlinson, D.R., 2001, A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy, FASEB J. 15:2508–2514.PubMedCrossRefGoogle Scholar
  42. Rex-Mathes, M., Werner, S., Strutas, D., Griffith, L.S., Viebahn, C., Thelen, K., and Schmitz, B. 2001, O-GlcNAc expression in developing and aging mouse brain, Biochimie. 83:583–590.PubMedCrossRefGoogle Scholar
  43. Roos, M.D., Xie, W., Su, K., Clark, J.A., Yang, X., Chin, E., Paterson, A.J., and Kudlow, J.E., 1998, Streptozotocin, an analog of N-acetylglucosamine, blocks the removal of O-GlcNAc from intracellular proteins, Proc Assoc Am Physicians. 110:422–432.PubMedGoogle Scholar
  44. Roquemore, E.P., Chevrier, M.R., Cotter, R.J., and Hart, G.W., 1996, Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin, Biochemistry. 35:3578–3586.PubMedCrossRefGoogle Scholar
  45. Sayeski, P.P. and Kudlow, J.E., 1996, Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription, J Biol Chem. 271:15237–15243.PubMedCrossRefGoogle Scholar
  46. Shafi, R., Iyer, S.P., Ellies, L.G., O’Donnell, N., Marek, K.W., Chui, D., Hart, G.W., and Marth, J.D., 2000, The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny, Proc Natl Acad Sci USA. 97:5735–5739.PubMedCrossRefGoogle Scholar
  47. Swain, S.M., Tseng, T.S., and Olszewski, N.E., 2001, Altered expression of SPINDLY affects gibberellin response and plant development, Plant Physiol. 126:1174–1185.PubMedCrossRefGoogle Scholar
  48. Torres, C.R. and Hart, G.W., 1984, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes, Evidence for O-linked GlcNAc, J Biol Chem. 29:3308–3317.Google Scholar
  49. Wells, L., Gao, Y., Mahoney, J.A., Vosseller, K., Chen, C., Rosen, A., and Hart, G.W., 2002, Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase, J Biol Chem. 277:1755–1761.PubMedCrossRefGoogle Scholar
  50. Wrabl, J.O. and Grishin, N.V., 2001, Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily, J Mol Biol. 314:365–374.PubMedCrossRefGoogle Scholar
  51. Wolfe, M.S., 2002, Secretase as a target for Alzheimer’s disease, Curr Top Med Chem. 2:371–383.PubMedCrossRefGoogle Scholar
  52. Yao, P.J. and Coleman, P.D., 1998, Reduced O-glycosylated clathrin assembly protein AP180: implication for synaptic vesicle recycling dysfunction in Alzheimer’s disease, Neurosci Lett. 252:33–36.PubMedCrossRefGoogle Scholar
  53. Zhang, X. and Bennett, V., 1986, Identification of O-linked N-acetylglucosamine modification of ankyrinG isoforms targeted to nodes of Ranvier, J Biol Chem. 271:31391–31398.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Tony Lefebvre
    • 1
  • Marie-Laure Caillet-Boudin
    • 1
  • Luc Buée
    • 2
  • André Delacourte
    • 2
  • Jean-Claude Michalski
    • 1
  1. 1.UMR 8576 UGSF/CNRS cité scientifiqueVilleneuve d’AscqFrance
  2. 2.U422 INSERMLille cedexFrance

Personalised recommendations