Advertisement

Human Embryonic or Adult Stem Cells: An Overview on Ethics and Perspectives for Tissue Engineering

  • Philippe R. Henon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 534)

Abstract

Over the past few years, research on animal and human stem cells has experienced tremendous advances which are almost daily loudly revealed to the public on the front-page of newspapers. The reason for such an enthusiasm over stem cells is that they could be used to cure patients suffering from spontaneous or injuries-related diseases that are due to particular types of cells functioning incorrectly, such as cardiomyopathy, diabetes mellitus, osteoporosis, cancers, Parkinson’s disease, spinal cord injuries or genetic abnormalities. Currently, these diseases have slightly or non-efficient treatment options, and millions of people around the world are desperately waiting to be cured. Even if not any person with one of these diseases could potentially benefit from stem cell therapy, the new concept of “regenerative medicine” is unprecedented since it involves the regeneration of normal cells, tissues and organs which could allow to treat a patient whereby both, the immediate problem would be corrected and the normal physiological processes restored, without any need for subsequent drugs.

However, conflicting ethical controversies surround this new medicine approach, inside and outside the medical community, especially when human embryonic stem cells (h-ESCs) are concerned. This ethical debate on clinical use of h-ESCs has recently encouraged the research on “adult” stem cells (ASCs) regarded as a less conflicting alternative for the future of regenerative medicine.

Keywords

Stem Cell Neural Stem Cell Human Embryonic Stem Cell Adult Stem Cell Blood Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomson, J.A., Itskovitz-Eldor J, Shapiro, S., Waknitz M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M., 1998, Embryonic stem cell lines derived from human blastocysts.Science 2821145–1147.CrossRefGoogle Scholar
  2. 2.
    First, N.L., and Thomson, J., 1998, From cows stem therapies?Nat. Biotechnol. 16620–621.CrossRefGoogle Scholar
  3. 3.
    Odorico, J.S., Kaufman, D.S., and Thomson, J.A., 2001, Multilineage differentiation from human embryonic stem cell lines.Stem Cells 19193–204.CrossRefGoogle Scholar
  4. 4.
    Reubinoff, B.E., Per, M.F., Fong, C.Y., Trounson, A., and Bongso, A. 2000, Embryonic stem cell lines from human blastocysts: somatic differentiation invitro. Nat. Biotechnol 18299–404.Google Scholar
  5. 5.
    Itskovitz-Eldor, J., Schulding, M., Karesenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N., 2000, Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers.Mol. Med. 588–95.Google Scholar
  6. 6.
    Kunkel, T.A., and Bebenek, K., 2000, DNA replication fidelity.Annu Rev. Biochem. 69497–529.CrossRefGoogle Scholar
  7. 7.
    Klug, M.G., Soonpaa, M.H., Koh, G.Y.et al.1996, Genetically selected cardiomyocytes from differentiating embryonic stem cells from stable intracardiac grafts. J.Clin. Invest. 98216–224.CrossRefGoogle Scholar
  8. 8.
    .McDonald, J.W., Liu, X., Qu, Y.et al.1999, Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord.Nat. Med.5, 1410–1412.CrossRefGoogle Scholar
  9. 9.
    Drukker, M., Katz, G., Urbach, A.et al.2002, Characterization of the expression of MHC proteins in human embryonic stem cells.PNAS 999864–9865.CrossRefGoogle Scholar
  10. 10.
    Westphal, C.H., and Leder, P., 1997, Transposon-generated « knock-out » and « knock-in » gene-targeting constructs for use in mice.Curr. Biol. 7530–533.CrossRefGoogle Scholar
  11. 11.
    Hardy, R.R., and Malissen, B., 1998, Lymphocyte development. The (knock) ins and outs of lymphoid development (Editorial).Curr. Opin. Immunol. 10155–157.CrossRefGoogle Scholar
  12. 12.
    Spitzer, T.R., Delmonico, F., Tolkoff-Rubin, N.et al.1999, Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism.Transplantation 68480–484.CrossRefGoogle Scholar
  13. 13.
    Maximow, A., 1909, Der lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung and im postfetalen Leben der Saugetiere.Folia Haemat(Lpz), 8.Google Scholar
  14. 14.
    Pappenheim, A., 1917, Prinzipien der neueren morphologischen Haematozytologie nach zytogenetischer Grundlage.Folia Haemat. 9921–91.Google Scholar
  15. 15.
    Lorenz, E. Uphoff, D., Reid, T.R., and Shelton, E., 1951, Modification of irradiation injury in mice and guinea pigs by bone marrow injections.J Natl Cancer Inst 12197–202.Google Scholar
  16. 16.
    Ford, C.E., Hamerton, J.L., Barnes, D.W.H., and Loutit, J.F., 1956, Cytological identification of radiation-chimeras.Nature 177452–460.CrossRefGoogle Scholar
  17. 17.
    Nowell, P.C., Cole, L.J., Habermeyer, J.G., and Roan, P.L., 1956, Growth and continued function of rat marrow cells in irradiated mice.Cancer Res. 16258–265.Google Scholar
  18. 18.
    Micklem, H.S., Anderson, N., and Ross, E., 1975, Limited potential of circulating haemopoietic stem cells.Nature 256, 41–44. Google Scholar
  19. 19.
    Till, J.E., and McCulloch, E.A., 1961, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radial. Res. 14213.CrossRefGoogle Scholar
  20. 20.
    Goodman, J.W., and Hodgson, G.S., 1962, Evidence for stem cells in the peripheral blood of mice.Blood 19702–14.Google Scholar
  21. 21.
    Cavins, J.A., Scheer, S.C., Thomas, E.D., and Ferrebee, J.W., 1964, The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at —80ºC.Blood 2338–43.Google Scholar
  22. 22.
    Haines, M.E., Goldmann, J.M., Worsley, A.M.et al.1984, Chemotherapy and autografting for patients with chronic granulocytic leukaemia in transformation: probable prolongation of life for some patients.Br. J. Haematol. 58711–722.CrossRefGoogle Scholar
  23. 23.
    Civin, C., Strauss, L.C., Brovall, C., Fackler, M.J., Schwartz, H., and Shaper, J.H., 1984, Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-Ia cells.J.Immunol. 133157–165.Google Scholar
  24. 24.
    Juttner, C.A., To, L.B., Haylock, D.N., Brandford, A., and Kimber, R.J., 1985, Circulating autologous stem cells collected in very early remission from acute nonlymphoblastic leukaemia produce prompt but incomplete haematopoietic reconstitution after high-dose melphalan or supralethal radiotherapy.Br.J.Haematol. 61739–745.CrossRefGoogle Scholar
  25. 25.
    Reiffers, J., Bernard, Ph., and DavidB.1986, Successful autologous transplantation with circulating haemopoietic stem cells in a patient with acute leukaemia.Exp.Hematol. 14312–315.Google Scholar
  26. 26.
    Körbling, M., Dorken, B., Ho, A.D., Pezzuto, A., Hunstein, W., and Fliedner, T.M., 1986, Autologous transplantation of blood-derived hemopoietic stem cells after myeloblative therapy in a patient with Burkitt’s lymphoma.Blood 67529–532.Google Scholar
  27. 27.
    Kessinger, A., Armitage, J.O., and LandmarkJ.D.1986, Use of autologous cryopreserved peripheral stem cells to shorten marrow aplasia after high dose therapy for patients with advanced breast cancer and bone marrow metastases.Proc. Am. Soc. Clin. Oncol. 5245Google Scholar
  28. 28.
    Debecker, A., Hénon, Ph., Lepers, M., Eisenmann, J.C., Selva, J., 1986, Collection de cellules circulantes en sortie d’aplasie post-chimiothérapique dans les leucémies aigues.Nouv. Rev. Fr. Hematol. 28287–292.Google Scholar
  29. 29.
    Gluckman, E., Broxmeier, H.E., Auerbach, A.D.et al.1989, Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling.N. Engl. J. Med 3211174–1178.CrossRefGoogle Scholar
  30. 30.
    Bjornson, C.R.R., Rietze, R.L., Reynolds, B.A., Magli, M.C., and Vescovi, A.L., 1999, Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo.Science 283534–537.CrossRefGoogle Scholar
  31. 31.
    Morshead, C.M., Benveniste, R., Iscove, N.N.et al.2002, Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations.Nat. Med. 8268–273.CrossRefGoogle Scholar
  32. 32.
    Clarke, D.L., Johansson, C.B., Wilbertz, J.et al.2000, Generalized potential of adult neural stem cells.Science 2881660–1663.CrossRefGoogle Scholar
  33. 33.
    Jackson, K.A., Majka, S.M., Wang, H.et al.2001, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.J.Clin.lnvest. 1071395–1402.CrossRefGoogle Scholar
  34. 34.
    Orlic, D., Kajstura, J., Chimenti, S.et al.2001, Bone marrow cells regenerate infarcted myocardium.Nature 410701–705.CrossRefGoogle Scholar
  35. 35.
    Kocher, A.A., Schuster, M.D., Szabolcs, M.J.et al.2001, Neovascularization of ischemic myocardium by human bone-marrox-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.Nat. Med. 7430–436.CrossRefGoogle Scholar
  36. 36.
    Lagasse, E., Connors, H., AI-Dhalimy, M.et al.2000, Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat.Med. 61229–1234.CrossRefGoogle Scholar
  37. 37.
    Krause, D.S., Theise, N.D., Collector, M.et al.2001, Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.Cell 105369–377CrossRefGoogle Scholar
  38. 38.
    Terada, N., Hamazaki, T., Oka, M.et al.2002, Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion.Nature 416542–545.CrossRefGoogle Scholar
  39. 39.
    Ying, Q.Y., Nichols, J., Evans, E.P., and Smith, A.G., 2002 Changing potency by spontaneous fusion.Nature 416545–548.CrossRefGoogle Scholar
  40. 40.
    WagersA.J.Sherwood, R.I., Christensen, J.L., and Weissmann, I.L., 2002, Little evidence for developmental plasticity of adult hematopoietic stem cells.Science 2972256–2259.CrossRefGoogle Scholar
  41. 41.
    Prockop, D., 1997, Marrow stromal cells as stem cells for non-hematopoietic tissues.Science 27671–74.CrossRefGoogle Scholar
  42. 42.
    fin, H.K., Carter, J.E., Huntley, G.W., and Schuchman, E.H., 2002, Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span.JC1in.Invest.109, 1183–1191.Google Scholar
  43. 43.
    Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L.et al.2002, Pluripotency of mesenchymal stem cells derived from adult marrow.Nature 41841–49.CrossRefGoogle Scholar
  44. 44.
    Reyes, M., Dudek, B., Jahagirdar, B., Koodie, K., Marker, Ph., and Verfaillie, C.M., 2002, Origin of endothelial progenitors in human postnatal bone marrow.J. Clin. Invest. 109337–346.Google Scholar
  45. 45.
    Schwartz, R.E., Reyes, M., Koodie, L.et al.2002, Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J.CIin.Invest. 1091291–1302.Google Scholar
  46. 46.
    Menasche, P., Hagege, A.A., Scorsin, M.et al.2001, Myoblast transplantation for heart failure.Lancet 357279–280.CrossRefGoogle Scholar
  47. 47.
    Hamano, K., Nishida, M., Hirata, K. et al., 2001, Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results.Jpn.Circ.J. 65845–847.CrossRefGoogle Scholar
  48. 48.
    Porcellini, A., Reimers, B., Azzarello, G., Pascotto P. and Vinante 0. 2002, Intramyocardial inoculation of autologous bone marrow cells in patients with refractory myocardial ischemia.Blood 100(suppl. 1), 217a (Abstract).Google Scholar
  49. 49.
    Strauer, B.E., Brehm, M., Zeus, T.et al.2002, Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation 1061913–1918.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Philippe R. Henon
    • 1
  1. 1.Département d’Hématologie and Institut de Recherche en Hématologie et TransfusionHôpitaux de MulhouseMulhouseFrance

Personalised recommendations