Principles of Imaging

Theory and Instrumentation
  • Periannan Kuppusamy
  • Michael Chzhan
  • Jay L. Zweier
Part of the Biological Magnetic Resonance book series (BIMR, volume 18)


Electron paramagnetic resonance (EPR) imaging of free radicals in objects is performed from projections using magnetic field gradients. Low frequency (2 GHz or less) continuous-wave EPR instrumentation with capability for up to three-dimensional spatial and up to four-dimensional spectral-spatial imaging are commonly used for biological samples. Image reconstruction is performed by filtered-backprojection methods. The basic concepts of EPR imaging, instrumentation, data acquisition, signal processing, and image reconstruction are discussed. Strategies for enhancement of image quality and resolution have also been discussed in this Chapter. A few examples that are representative of biological applications are presented.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Magnetic Field Gradient Spin Probe Gradient Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, A. & Bleaney, B. (1986). Electron Paramagnetic Resonance of Transition Metal Ions, Dover, New York.Google Scholar
  2. Afeworki, M., van Dam, G. M., Devasahayam, N., Murugesan, R., Cook, J., Coffin, D., Andrekj-Larsen, J. H., Mitchell, J. B., Subramanian, S. & Krishna, M. C. (2000). Three-dimensional whole body imaging of spin probes in mice by time-domain radiofrequency electron paramagnetic resonance. Magn. Reson. Med. 43(3), 375–382.Google Scholar
  3. Alecci, M., Brivati, J. A., Placidi, G. & Sotgiu, A. (1998a). A Radiofrequency (220-MHz) Fourier Transform EPR Spectrometer. JMagn Reson 130(2), 272–80.CrossRefGoogle Scholar
  4. Alecci, M., Brivati, J. A., Placidi, G., Testa, L., Lurie, D. J. & Sotgiu, A. (1998b). A submicrosecond resonator and receiver system for pulsed magnetic resonance with large samples. Magn. Reson. Med. 132, 162–166.Google Scholar
  5. Alecci, M., Colacicchi, S., Indovina, P. L., Momo, F., Pavone, P. & Sotgiu, A. (1990). Three-dimensional in vivo ESR imaging in rats. Magn Reson Imaging 8(1), 59–63.PubMedCrossRefGoogle Scholar
  6. Bacic, G., Demsar, F., Zolnai, Z. & Swartz, H. M. (1988). Contrast enhancement in ESR imaging: role of oxygen. Magn. Reson. Med. Biol. 1, 55–65.Google Scholar
  7. Bacic, G., Nilges, M. J., Magin, R. L., Walczak, T. & Swartz, H. M. (1989). In vivo localized ESR spectroscopy reflecting metabolism. Magn Reson Med 10(2), 266–72.PubMedCrossRefGoogle Scholar
  8. Berliner, J. L. & Fujii, H. (1985). Magnetic resonance imaging of biological specimens by electron paramagnetic resonance of nitroxide spin labels. Science 227(4686), 517–519.PubMedCrossRefGoogle Scholar
  9. Berliner, L. J., Ed. (1976, 1979). Spin Labeling: Theory and Applications. Vol. 1–2. New York: Academic.Google Scholar
  10. Berliner, L. J. (1992). Applications of EPR imaging to materials, agriculture and medicine. In Magnetic Resonance Microscopy: Methods and Applications in Material Science, Agriculture and Biomedicine (Blumich, B. & Kuhn, W., eds.), pp. 151–163. VCH Publishers, Weinheim, Germany.Google Scholar
  11. Berliner, L. J., Fujii, H., Wan, X. M. & Lukiewicz, S. J. (1987). Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med 4(4), 380–4.PubMedCrossRefGoogle Scholar
  12. Bottomley, P. A. & Andrew, E. R. R F magnetic field penetration, power absorption and penetration depth in biological tissues (1978). RF magnetic field penetration, phaseshift and power dissipation in biological tissue: implications for NMR imaging. Phys. Med. Biol.(23), 630–637.Google Scholar
  13. Bourg, J., Krishna, M. C., Mitchell, J. B., Tschudin, R. G., Pohida, T. J., Friauf, W. S., Smith, P. D., Metcalfe, J., Harrington, F. & Subramanian, S. (1993). Radiofrequency FT EPR spectroscopy and imaging. J. Magn. Reson. B 102, 112–115.CrossRefGoogle Scholar
  14. Brumby, S. (1979). Numerical ananlysis of EPR spectra 1. Two methods of calculating reduced spectra. J. Magn. Reson. 34, 317–325.Google Scholar
  15. Chzhan, M., Kuppusamy, P., Samouilov, A., He, G. & Zweier, J. L. (1999). A tunable reentrant resonator with transverse orientation of electric field for in vivo EPR spectroscopy. J Magn. Reson. 137, 373–378.PubMedCrossRefGoogle Scholar
  16. Chzhan, M., Kuppusamy, P. & Zweier, J. L. (1995). Development of an electronically tunable L-band resonator for EPR spectroscopy and imaging of biological samples. J. Magn. Reson. B. 108, 67–72.PubMedCrossRefGoogle Scholar
  17. Chzhan, M., Shtenbuk, M., Kuppusamy, P. & Zweier, J. L. (1993). An optimized L-band ceramic resonator for EPR imaging of biological samples. J. Magn. Reson. A 105, 49–53.CrossRefGoogle Scholar
  18. Colacicchi, S., Ferrari, M. & Sotgiu, A. (1992). In vivo electron paramagnetic resonance spectroscopy/imaging: First experiences, problems, and perspectives. Mt J Biochem 24(2), 205–214.Google Scholar
  19. Coy, A., Kaplan, N. & Callaghan, P. T. (1991). Three-dimensional pulsed ESR imaging. J Magn. Reson. A 121, 201–205.CrossRefGoogle Scholar
  20. Dalton, L. R., Ed. (1984). EPR and advanced EPR studies of biological systems. Boca Raton, FL: CRC Press.Google Scholar
  21. Eaton, G. R. & Eaton, S. S. (1989). Three-approaches to spectral-spatial EPR imaging. Appl. Radiat. Isotopes 40, 1227–1231.Google Scholar
  22. Eaton, G. R., Eaton, S. S. & Ohno, K. (1991). EPR imaging and in vivo EPR, CRC Press, Inc, Boca Raton, FL.Google Scholar
  23. Ewert, U., Crepaue, R. H., Dunnan, C. R., Xu, D., Lee, S. & Freed, J. H. (1991). Fourier transform electron spin resonance imaging. Chem. Phys. Lett. 184, 25–33.CrossRefGoogle Scholar
  24. Ewert, U. & Herrling, T. (1985). Numerical analysis in EPR zeugmatography with modulated gradient. J. Magn. Reson. 61, 11–17.Google Scholar
  25. Ewert, U. & Thiessenhusen, H.-U. (1991). Deconvolution for the stationary-gradient method. In EPR Imaging and in vivo EPR (Eaton, G. R., Eaton, S. S. & Ohno, K., eds.), pp. 119–126. CRC Press, Boca Raton.Google Scholar
  26. Froncisz, W. & Hyde, J. S. (1982). The loop gap resonator, a new microwave lumped circuit ESR sample structure. J. Magn. Reson. 47, 515–521.Google Scholar
  27. Golay, M. J. (1958). Field homogenizing coils for nuclear spin resonance instrumentation. Rev. Sci. Inst 29, 313–315.CrossRefGoogle Scholar
  28. Hahn, S. M., Sullivan, F. J., DeLuca, A. M., Krishna, C. M. & Wersto, N. (1997). Evaluation of Tempol radioprotection in a murine tumor model. Free Radic Biol Med 22(7), 1211–6.PubMedCrossRefGoogle Scholar
  29. Halpern, H. J., Peric, M., Yu, C. & Bales, B. L. (1993). Rapid quantitation of parameters from inhomogeneously broadened EPR spectra. J. Magn. Reson. A 103, 13–22.CrossRefGoogle Scholar
  30. Halpern, H. J., Spencer, D. P., Polen, J. V., Bowman, M. K., Nelson, A. C., Dowey, E. M., Teicher, E. A. (1989). Imaging radiofrequency electron spin resonance spectrometer with high resolution and sensitivity for in vivo measurements. Rev. Sci. Instrum. 60, 1040–1050.CrossRefGoogle Scholar
  31. Halpern, H. J., Yu, C., Peric, M., Barth, E., Grdina, D. J. & Teicher, B. A. (1994). Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc. Natl. Acad. Sci. USA 91(26), 13047–13051.PubMedCentralPubMedCrossRefGoogle Scholar
  32. He, G., Shankar, R. A., Chzhan, M., Samouilov, A., Kuppusamy, P. & Zweier, J. L. (1999). Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 96(8), 4586–4591.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hoch, M. J. R. & Ewert, U. (1991). Resolution in EPR imaging. In EPR Imaging and In Vivo EPR (Eaton, G. E., Eaton, S. S. & Ohno, K., eds.), pp. 153–159. CRC Press, Boca Raton.Google Scholar
  34. Hornak, J. P., Moscicki, J. K., Schneider, D. J. & Freed, J. H. (1986). Diffusion coefficients in anisotropic fluids by ESR imaging of concentration profiles. J. Chem. Phys. 84, 3387–3395.CrossRefGoogle Scholar
  35. Ikeya, M. (1989). Use of electron spin resonance spectrometry in microscopy, dating and dosimetry. Analytical Sciences 5, 5–12.CrossRefGoogle Scholar
  36. Krishna, M. C., Samuni, A., Taira, J., Goldstein, S., Mitchell, J. B. & Russo, A. (1996). Stimulation by nitroxides of catalase-like activity of hemeproteins. J. Biol. Chem. 271(42), 26018–26025.PubMedCrossRefGoogle Scholar
  37. Kuppusamy, P., Afeworki, M., Shankar, R. A., Coffin, D., Krishna, M. C., Hahn, S. M., Mitchell, J. B. & Zweier, J. L. (1998a). In vivo electron paramagnetic resonance Imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res. 58, 1562–1568.Google Scholar
  38. Kuppusamy, P., Chzhan, M., Samouilov, A., Wang, P. & Zweier, J. L. (1995a). Mapping the spin-density and lineshape distribution of free radicals in the heart using 4D spectral-spatial EPR imaging. J Magn. Reson. B 107(2), 116–125.CrossRefGoogle Scholar
  39. Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D. J., Giannella, E. & Zweier, J. L. (1994). Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc. Natl. Acad. Sci. USA 91, 3388–3392.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kuppusamy, P., Chzhan, M., Wang, P. & Zweier, J. L. (1996a). Three-dimensional gated EPR imaging of the beating heart: Time-resolved measurements of free radical distribution during the cardiac contractile cycle. Magn. Res. Med. 35(3), 323–328.Google Scholar
  41. Kuppusamy, P., Chzhan, M. & Zweier, J. L. (1995b). Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues. J. Magn. Reson. B 106(2), 122–130.CrossRefGoogle Scholar
  42. Kuppusamy, P., Ohnishi, S. T., Numagami, Y., Ohnishi, T. & Zweier, J. L. (1995c). Three-dimensional imaging of nitric oxide production in the rat brain subjected to ischemiahypoxia. J. Cereb. Blood Flow. Metab. 15(6), 899–903.CrossRefGoogle Scholar
  43. Kuppusamy, P., Shankar, R. A. & Zweier, J. L. (1998b). In vivo measurement of arterial and venous oxygenation in the rat using 3D spectral-spatial electron paramagnetic resonance imaging. Phys. Med. Biol. 43, 1837–1844.Google Scholar
  44. Kuppusamy, P., Wang, P., Chzhan, M. & Zweier, J. L. (1997). High resolution electron paramagnetic resonance imaging of biological samples with a single line paramagnetic label. Magn. Reson. Med. 37, 479–483.Google Scholar
  45. Kuppusamy, P., Wang, P., Samouilov, A. & Zweier, J. L. (1996b). Spatial mapping of nitric oxide in the ischemic heart using electron paramagnetic resonance imaging. Magn. Reson. Med. 36(2), 212–218.Google Scholar
  46. Kuppusamy, P., Wang, P., Shankar, R. A., Ma, L., Trimble, C. E., Hsia, C. J. & Zweier, J. L. (1998c). In vivo topical EPR spectroscopy and imaging of nitroxide free radicals and polynitroxyl-albumin. Magn Reson Med 40(6), 806–811.CrossRefGoogle Scholar
  47. Kuppusamy, P., Wang, P. & Zweier, J. L. (1995d). Three-dimensional spatial EPR imaging of the rat heart. Magn. Reson. Med. 34, 99–105.Google Scholar
  48. Kuppusamy, P., Wang, P., Zweier, J. L., Krishna, M. C., Mitchell, J. B., Ma, L., Trimble, C. & Hsia, C. J. (1996c). Electron paramagnetic resonance imaging of rat heart with nitroxide and a polynitroxylated albumin. Biochemistry 35(22), 7051–7057.CrossRefGoogle Scholar
  49. Kuppusamy, P. & Zweier, J. L. (1996). A forward-subtraction procedure for removing hyperfine artifacts in electron paramagnetic resonance imaging. Magn. Reson. Med. 35(3), 316–322.Google Scholar
  50. Lauterbur, P. C., Levin, D. N. & Marr, R. B. (1984). Theory and simulation of NMR spectroscopic imaging and field plotting by projection reconstruction involving an intrinsic frequency dimension../. Magn. Reson. 59, 536–541.Google Scholar
  51. Lee, S., Patyal, B. R. & Freed, J. H. (1993). A two-dimensional Fourier transform electron spin resonance (ESR) study of nuclear modulation and spin relaxation in irradiated malonic acid. J. Chem. Phys. 98, 3665–3689.CrossRefGoogle Scholar
  52. Maar, R. B., Chen, C. N. & Lauterbur, P. C. (1981). On two approached to 3D reconstruction in NMR zeugmatography. In Mathematical Aspects of Computerized Tomography (Herman, G T & Natterer, F., eds.), Vol. 8, pp. 225. Springer-Verlag, New York/Berlin.CrossRefGoogle Scholar
  53. Maltempo, M. M. (1986). Differentiation of spectral and spatial components in EPR imaging using 2-D image reconstruction algorithms. J. Magn. Reson. 69, 156–161.Google Scholar
  54. Maltempo, M. M., Eaton, S. S. & Eaton, G. R. (1987). Spectral-spatial two-dimensional EPR imaging. J. Magn. Reson. 72, 449–455.Google Scholar
  55. Maltempo, M. M., Eaton, S. S. & Eaton, G. R. (1988). Reconstruction of spectral-spatial two-dimensional EPR images from incomplete sets of projections without prior knowledge of the component spectra. J Magn. Reson. 77, 25–29.Google Scholar
  56. Maltempo, M. M., Eaton, S. S. & Eaton, G. R. (1989). Artifacts in spectral-spatial images of portions of spectra. J. Magn. Reson. 85, 303–313.Google Scholar
  57. Mitchell, J. B. (1998). Protective properties of stable nitroxide free radicals against oxidative stress. In Free Radicals in Toxicology and Drug Metabolism C.J Rhodes, editor, Taylor and Francis, New York (2000).Google Scholar
  58. Murugesan, R., Afeworki, M., Cook, J., Devasahayam, N., Tschudin, R. G., Mitchell, J. B., Subramanian, S. & Krishna, M. C. (1998). A broad-band pulsed radiofrequency electron paramagnetic resonance spectrometer for biological applications. Rev. Scien. Instr. 69, 1869–1876.CrossRefGoogle Scholar
  59. Murugesan, R., Cook, J. A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J. A., Mitchell, J. B., Russo, A. & Krishna, M. C. (1997). In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy. Magn. Reson. Med. 38, 409–414.Google Scholar
  60. Ohno, K. (1982). ESR imaging: a deconvolution method for hyperfine patterns. J. Magn. Reson. 50, 145–150.Google Scholar
  61. Ohno, K. (1986). ESR imaging and its applications. Applied Spectroscopy Reviews 22, 1–56.CrossRefGoogle Scholar
  62. Patyal, B. R., Crepeau, R. H., Gamliel, D. & Freed, J. H. (1990). Two-dimensional Fourier transform ESR in the slow motional and rigid limits: SECSY-ESR. Chem. Phys. Lett. 175, 445–452.CrossRefGoogle Scholar
  63. Poole Jr., C. P. (1983). Electron Spin Resonance. 2nd. edit, Wiley, New York.Google Scholar
  64. Quaresima, V., Alecci, M., Ferrari, M. & Sotgiu, A. (1992). Whole rat electron paramagnetic resonance imaging of a nitroxide free radical by a radio frequency (280 MHz) spectrometer. Biochem Biophys Res Commun 183(2), 829–35.PubMedCrossRefGoogle Scholar
  65. Ramachandran, G. N. & Lakshminarayanan, A. V. (1971). Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc. Natl. Acad. Sci. USA 68, 2236.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Sachs, G. & Dormann, E. (1984). Low-field pulsed electron spin resonance in organic conductors. Bruker Report, 30.Google Scholar
  67. Samuni, A., Winkelsberg, D., Pinson, A., Hahn, S. M., Mitchell, J. B. & Russo, A. (1991). Nitroxide stable radicals protect beating cardiomyocytes against oxidative damage. J. Clin. Invest. 87, 1526–1530.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Senthil Velan, S., Spencer, R. G. S., Zweier, J. L. & Kuppusamy, P. (2000). Electron paramagnetic resonance oximetry mapping (EPROM): Direct visualization of oxygenconcentration in tissues. Magn. Reson. Med. 43, 804–809.Google Scholar
  69. Shepp, L. A. & Logan, B. F. (1974). The Fourier reconstruction of a head section. I E E E. Trans. Nucl. Sci. NS-21, 21–42.CrossRefGoogle Scholar
  70. Sotgiu, A. (1985). Resonator design for in vivo EPR spectroscopy. J. Magn. Reson. 65, 206–214.Google Scholar
  71. Sotgiu, A., Gazzillo, D. & Momo, F. (1987). ESR imaging: spatial deconvolution in the presence of an asymmetric hyperfine structure. J. Phys. C: Solid State Phys. 20, 6297–6304.CrossRefGoogle Scholar
  72. Stemp, E. D. A., Eaton, S. S., Eaton, G. R. & Maltempo, M. M. (1988). Spectral-spatial ESR imaging of portions of spectra of paramagnetic metals. J Chem. Soc. Chem. Comm., 61–62.Google Scholar
  73. Subramanian, S., Murugesan, R., Devasahayam, N., Cook, J. A., Afeworki, M., Pohida, T., Tschudin, R. G., Mitchell, J. B. & Krishna, M. C. (1999). High-speed data acquisition system and receiver configurations for time-domain radiofrequency electron paramagnetic resonance spectroscopy and imaging. JMagn Reson 137(2), 379–88.CrossRefGoogle Scholar
  74. Swartz, H. M. (1990). Principles of the metabolism of nitroxides and their implications for spin trapping. Free Radic Res Commun 9(3–6), 399–405.PubMedCrossRefGoogle Scholar
  75. Symons, M. C. R. (1978). Chemical and Biological Aspects of Electron Spin Resonance Spectroscopy, Wiley, London.Google Scholar
  76. Testa, L., Gualtieri, G. & Sotgiu, A. (1993). Electron paramagnetic resonance imaging of a model of a beating heart. Phys Med Biol 38(2), 259–266.PubMedCrossRefGoogle Scholar
  77. Thomas, S. R., Busse, L. J. & Scheuck, V. F., Seattle, W.A. (1985). AAPM 1985 Summer School in Medical Physics, Seatle, WA.Google Scholar
  78. Weil, J. A., Bolton, J. R. & Wertz, J. E. (1994). Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, John Wiley & Sons, New York.Google Scholar
  79. Woods, R. K., Dobrucki, J. W., Glockner, J. D., Morse, P. D. & Swartz, H. M. (1989). Spectral-spatial EPR imaging as a method for non-invasive biological oximetry. J. Magn. Reson. 85, 50–59.Google Scholar
  80. Zweier, J. L. & Kuppusamy, P. (1988). Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues. Proc. Natl. Acad. Sci. USA 85, 5703–5707.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Periannan Kuppusamy
    • 1
    • 2
  • Michael Chzhan
    • 1
    • 2
  • Jay L. Zweier
    • 2
    • 2
  1. 1.The EPR Center, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.The Davis Heart Lung InstituteThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations