Skip to main content

Cardiac Applications of in Vivo EPR Spectroscopy and Imaging

  • Chapter

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 18))

Abstract

Free radicals are central mediators of a variety of cardiovascular diseases. It has been hypothesized that free radical metabolism, oxygenation, and nitric oxide generation in biological organs such as the heart may vary over the spatially defined tissue structure. There has been great interest in the measurement and spatial imaging of in vivo radical generation and metabolism in the heart. EPR spectroscopy can directly measure free radicals; however, it had not been possible to measure important biological radicals in situ in the heart because conventional spectrometers are not suitable for measurements on large aqueous structures such as whole organs or tissues. This chapter summarizes the design, construction, and application of instrumentation for EPR spectroscopy and imaging of the isolated heart. The spectrometer consists of an L-band microwave bridge with the source locked to the resonant frequency of a specially designed loop-gap resonator or reentrant resonator. Radical concentrations as low as 0.2 µM in aqueous solutions could be measured. Studies of isolated beating hearts involving simultaneous real time measurements of free radicals and cardiac contractile function are described. Applications studying the kinetics of free radical metabolism in normally perfused and globally ischemic hearts are reviewed. It is also demonstrated that this technique can be used to noninvasively measure myocardial oxygenation. To address fundamental questions regarding the role of spatially localized alterations in radical metabolism, oxygenation, and nitric oxide in the pathophysiology of cellular injury during ischemia, instrumentation was developed and optimized for 3D spatial and 3D or 4D spectral-spatial imaging of free radicals in the isolated perfused rat heart at 1.2 GHz. High quality 3D spectral-spatial imaging of nitroxide metabolism was performed as well as spatially localized measurements of oxygen concentrations, derived from the oxygen dependent linewidth broadening. In these spectral-spatial images submillimeter resolution was observed enabling visualization of the left ventricular and right ventricular myocardium. With 3D spatial imaging using single-line labels, resolutions down to 100 um were obtained enabling visualization of the ventricles, aortic root, and proximal coronary arteries. Using metal complexes which trap nitroc oxide, measurement and imaging of nitric oxide generation during cardiac ischemia was performed. With the use of 15N isotope labeling it was possible to map the metabolic pathway of this nitric oxide generation. EPR imaging is a powerful tool that can provide unique information regarding the spatial localization of free radicals, oxygen, and nitric oxide in biological organs such as the heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alecci, M., Colacicchi, S., Indovina, P. L., Momo, F., Pavone, P. &; Sotgiu, A. (1990). Three-dimensional in vivo ESR imaging in rats.Magn Reson Imaging8(1), 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Alecci, M., Ferrari, M., Quaresima, V., Sotgiu, A. &; Ursini, C. L. (1994). Simultaneous 280 MHz EPR imaging of rat organs during nitroxide free radical clearance.Biophys J67(3), 1274–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berliner, L. J.(1992). Applications of EPR imaging to materials, agriculture and medicine. InMagnrtic Resonance Microscopy: Methods and Applications inb Material Science,Agriculture and Biomedicine(Blumich, B. &; Kuhn, W., eds.), pp. 151–163. VCH Publishers, Weinheim, Germany.

    Google Scholar 

  • Chzhan, M., Kuppusamy, P. & Zweier, J. L. (1995). Development of an electronically tunable L-band resonator for EPR spectroscopy and imaging of biological &les.J. Magn. Reson. B. 108,67–72.

    Article  CAS  PubMed  Google Scholar 

  • Chzhan, M., Shteynbuk, M., Kuppusamy, P. &; ZweierJ.L. (1993). An optimized L-band resonator for EPR imaging of biological &les. J. Magn. Reson.105,49–53.

    Article  CAS  Google Scholar 

  • Colacicchi, S., Ferrari, M. &; Sotgiu, A. (1992). In vivo electron paramagnetic resonance spectroscopy/imaging: First experiences, problems, and perspectives.Int J Biochem24(2), 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, G. R., Eaton, S. S. &; Ohno, K. (1991).EPR imaging and in vivo EPRCRC Press, Inc, Boca Raton, FL.

    Google Scholar 

  • Froncisz, W. &; Hyde, J.S. (1982). The loop-gap resonator, a new microwave lumped circuit ESR &le structure.J. Magn. Reson.47,515–521.

    CAS  Google Scholar 

  • Fujii, H. &; Berliner, L.J. (1985). One-and two-dimensional EPR imaging studies on phantoms and plant specimens.Magn Reson Med2(3), 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Halpern, H. J., Spencer, D. P., Polen, J. V., Bowman, M. K., Nelson, A. C., Dowey, E. M. &; Teicher, E. A. (1989). Imaging radiofrequency electron spin resonance spectrometer with high resolution and sensitivity forin vivomeasurements.Rev. Sci. Instrum.60,1040–1050.

    Article  Google Scholar 

  • Kuppusamy, P., Afeworki, M., Shankar, R. A., Coffin, D., Krishna, M. C., Hahn, S. M., Mitchell, J. B. &; Zweier, J. L. (1998a). In vivo electon paramagnetic resonance Imaging of tumor heterogeneity and oxygenation in a murine model.Cancer Res.58,1562–1568.

    CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Chzhan, M., Samouilov, A., Wang, P. &; Zweier, J. L. (1995a). Mapping the spin-density and lineshape distribution of free radicals in the heart using 4D spectral-spatial EPR Imaging.J. Magn. Reson. B107(2), 116–125.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Chzhan, M., Samouilov, A., Wang, P. &; Zweier, J. L. (1995b). Mapping the spin-density and lineshape distribution of free radicals using 4D spectral-spatial EPR imaging.J. Magn. Reson. B107, 116–125.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D. J., Giannella, E. &; Zweir, J. L. (1994). Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation.Proc. Natl. Acad. Sci. USA91, 3388–3392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy, P., Chzhan, M., Wang, P. &; Zweier, J. L. (1996a). Three-dimensional gated EPR imaging of the beating heart: Time-resolved measurements of free radical distribution during the cardiac contractile cycle.Magn. Res. Med.35(3), 323–328.

    Article  CAS  Google Scholar 

  • Kuppusamy, P., Chzhan, M. &; Zweier, J. L. (1995c). Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues.J. Magn. Reson. B106(2), 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Ohnishi, S. T., Numagami, Y., Ohnishi, T. &; Zweier, J. L. (1995d). Three-dimensional imaging of nitric oxide production in the rat brain subjected to ischemiahypoxia.J. Cereb. Blood Flow. Metab.15(6), 899–903.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Shankar, R. A. &; Zweier, J. L. (1998b). In vivo measurement of arterial and venous oxygenation in the rat using 3D spectral-spatial electron paramagnetic resonance imaging.Phys. Med. Biol.43, 1837–1844.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Wang, P., Chzhan, M. &; Zweier, J. L. (1997). High resolution electron paramagnetic resonance imaging of biological &les with a single line paramagnetic label.Magn. Reson. Med.37, 479–483.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Wang, P., Samouilov, A. &; Zweier, J. L. (1996b). Spatial mapping of nitric oxide in the isehemic heart using electron paramagnetic resonance imaging.Magn. Reson. Med.36(2), 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Wang, P. &; Zweier, J. L. (1995e). Three-dimensional spatial EPR imaging of the rat heart.Magnetic Resonance in Medicine34(1), 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P. &; Zweier, J. L. (1996a). A forward-subtraction procedure for removing hyperfine artifacts in electron paramagnetic resonance imaging.Magn. Reson. Med.35(3), 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy, P. &; Zweier, J. L. (1996b). Hyperfine artifacts in electron paramagnetic resonance imaging.Res. Chem. Intermed.22, 593–604.

    Article  CAS  Google Scholar 

  • Lukiewicz, S. J. &; Lukiewicz, S. G. (1984). In vivo ESR spectroscopy of large biological objects.Magn. Reson. Med.1, 297–298.

    Google Scholar 

  • Maar, R. B., Chen, C. N. &; Lauterbur, P. C. (1981). On two approached to 3D reconstruction in NMR zeugmatography. InMathematical Aspects of Computerized Tomography(Herman, G. T. &; Natterer, F., eds.), Vol. 8, pp. 225. Springer-Verlag, New York/Berlin.

    Chapter  Google Scholar 

  • Ohno, K. (1986). ESR iamging and its applications.Applied Spectroscopy Reviews22, 1–56.

    Article  CAS  Google Scholar 

  • Sotgiu, A. (1985). Resonator design for in vivo EPR spectroscopy.J. Magn. Reson.65, 206–214.

    Google Scholar 

  • Subczynski, W. K., Lukiewicz, S. &; Hyde, J. S. (1986). Murine in vivo L-band ESR spin-label oximetry with a loop-gap resonator.Magn Reson Med3(5), 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Takeshita, K., Utsumi, H. &; Hamada, A. (1991). ESR measurement of radical clearance in lung of whole mouse.Biochem Biophys Res Commun177(2), 874–880.

    Article  CAS  PubMed  Google Scholar 

  • Testa, L., Gualtieri, G. &; Sotgiu, A. (1993). Electron paramagnetic resonance imaging of a model of a beating heart.Phys Med Biol38(2), 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Woods, R. K., Dobrucki, J. W., Glockner, J. D., Morse II, P. D. &; Swartz, H. M. (1989). Spectral-spatial EPR imaging as a method for non-invasive biological oximetry.J. Magn. Reson.85,50–59.

    CAS  Google Scholar 

  • Woods, R. K., Hyslop, W. B., Maar, R. B. &; Lauterbur, P. C. (1991). Image reconstruction. InEPR Imaging and In vivo EPR(Eaton, G. R., Eaton, S. S. &; Ohno, K., eds.), pp. 91–1 17. CRC Press, Boca Raton.

    Google Scholar 

  • Zweier, J. L., Chzhan, M., Ewert, U., Schneider, G. &; Kuppusamy, P. (1994). Development of a highly sensitive probe for measuring oxygen in biological tissues.J. Magn. Reson. B105,52–57.

    Article  CAS  PubMed  Google Scholar 

  • Zweier, J. L., Flaherty, J. T. &; Weisfeldt, M. L. (1987). Direct measurement of free radical generation following reperfusion of ischemic myocardium.Proc Nall Acad Sci U S A84(5),1404–1407.

    Article  CAS  Google Scholar 

  • Zweier, J. L. &; Jacobus, W. E. (1987). Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart.J Biol Chem262(17), 8015–8021.

    CAS  PubMed  Google Scholar 

  • Zweier, J. L. &; Kuppusamy, P. (1988). Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues.Proc. Natl. Acad. Sci. USA85,5703–5707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zweier, J. L., Kuppusamy, P., Williams, R., Raybum, B. K., Smith, D., Weisfeldt, M. L. &; Flaherty, J. T. (1989). Measurement and characterization of postischemic free radical generation in the isolated perfused heart.JBiol Chem264(32),18890–18895.

    CAS  Google Scholar 

  • Zweier, J. L., Wang, P. &; Kuppusamy, P. (1995a). Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy.J Biol Chem270(1),304–307.

    Article  CAS  PubMed  Google Scholar 

  • Zweier, J. L., Wang, P., Samouilov, A. &; Kuppusamy, P. (1995b). Enzyme-independent formation of nitric oxide in biological tissues.Nat Med1(8), 804–809.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zweier, J.L., Samouilov, A., Kuppusamy, P. (2003). Cardiac Applications of in Vivo EPR Spectroscopy and Imaging. In: Berliner, L.J. (eds) In Vivo EPR (ESR). Biological Magnetic Resonance, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0061-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0061-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4906-8

  • Online ISBN: 978-1-4615-0061-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics