Homeostatic Regulation of Excitatory-Inhibitory Balance

  • Gina Turrigiano


Activity plays an important role in refining synaptic connectivity during development, but the precise mechanisms that underlie this activity-dependent refinement are still unknown. There is considerable evidence that correlation-based, or Hebbian, plasticity mechanisms akin to long-term potentiation and depression (LTP and LTD) play an important role in synaptic refinement1–3. However, it is not clear that Hebbian plasticity is sufficient for understanding activity-dependent development because the dramatic changes in synaptic strength produced by this kind of plasticity tend to destabilize the activity of neural circuits4–6. Additionally, LTD and LTP do not automatically generate competition between inputs5, but such competition is clearly an important aspect of sensory system plasticity1. It is therefore likely that LTP and LTD-like phenomena co-exist with other cellular plasticity mechanisms that provide competition and stability during activity-dependent development.


Visual Cortex Firing Rate Primary Visual Cortex Synaptic Strength Homeostatic Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shatz, C.J., (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5:745–756.PubMedCrossRefGoogle Scholar
  2. 2.
    Malenka, R.C., and Nicoll, R.A., (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16,12,:521–527.PubMedCrossRefGoogle Scholar
  3. 3.
    Bear, M.F., and Malenka, R.C., (1994) Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4:389–399.PubMedCrossRefGoogle Scholar
  4. 4.
    Abraham, W. C, and Bear, M.F., (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci.19:126–130.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller, K.D.,(1996) Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17:371–374.PubMedCrossRefGoogle Scholar
  6. 6.
    Turrigiano, G.G., (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22:221–227.PubMedCrossRefGoogle Scholar
  7. 7.
    Kreigstein, A.R., Suppes, T., and Prince, D.A., (1987). Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro. Brain Res. Dev. Brain Res. 34:161–171.CrossRefGoogle Scholar
  8. 8.
    Chagnac-Amitai, Y., and Conners, B.W., (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J. Neurophysiol. 62:1149–1162.PubMedGoogle Scholar
  9. 9.
    Sillito, A.M., (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. 250:305–329.PubMedGoogle Scholar
  10. 10.
    Nelson, S.B., (1991) Temporal interactions in the cat visual system. III. Pharmacological studies of cortical suppression suggest a presynaptic mechanism. J. Neurosci. 11:369–380.PubMedGoogle Scholar
  11. 11.
    Kirkwood, A., and Bear, M.F., (1994) Hebbian synapses in visual cortex. J. Neurosci. 14:1634–1645.PubMedGoogle Scholar
  12. 12.
    Kirkwood, A., Lee, H.K., and Bear, M.F., (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375:328–331.PubMedCrossRefGoogle Scholar
  13. 13.
    Hensch, T.K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S., and Kash, S.F., (1998) Local GABA circuit control of experience-dependent plasticity in the developing visual cortex. Science 282:1504–1508.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang, Z.J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M.F., Maffei, L., and Tonegawa, S., (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 17:739–755.CrossRefGoogle Scholar
  15. 15.
    Chub, N., and O’Donovan, M.J., (1998) Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J. Neurosci. 18:294– 306.PubMedGoogle Scholar
  16. 16.
    Thoby-Brisson, M., and Simmers, J., (1998) Neuromodulatory inputs maintain expression of a lobster motor pattern-generating network in a modulation-dependent state: evidence from long-term decentralization in vitro. J. Neurosci. 18:2212–225PubMedGoogle Scholar
  17. 17.
    Golowasch, J., Casey, M., Abbott, L.F., and Marder, E., (1999) Network stability from activity-dependent regulation of neuronal conductances. Neural Comput. 11:1079–1096.PubMedCrossRefGoogle Scholar
  18. 18.
    Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., and Nelson, S.B., (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896.PubMedCrossRefGoogle Scholar
  19. 19.
    Burrone J, O’Byrne M., and Murthy V.N., (2003) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420:414–418CrossRefGoogle Scholar
  20. 20.
    Turrigiano, G.G., and Nelson, S.B., (2000) Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10:358–364.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Brien, R.J., Kamboj, S., Ehlers, M.D., Rosen, K.R., Fischbach G.D., and Huganir, R.L., (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078.CrossRefGoogle Scholar
  22. 22.
    Lissin, D.V., Gomperts, S.N., Carroll, R.C., Christine, C.W., Kalman, D., Kitamura, M., Hardy, S., Nicoll, R.A., Malenka, R.C., and von Zastrow, M. (1998) Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95 : 7097–7102.PubMedCrossRefGoogle Scholar
  23. 23.
    Watt, A., van Rossum, M., MacLeod, K., Nelson, S.B., and Turrigiano, G.G., (2000) Activity co-regulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26:659–670.PubMedCrossRefGoogle Scholar
  24. 24.
    Kilman, V., van rossum, M.C.W., and Turrigiano, G.G., (2002) Activity deprivation reduces mIPSC amplitude by decreasing the number of postsynaptic GABAa receptors clustered at neocortical synapses. J. Neurosci., 22:1328–1337PubMedGoogle Scholar
  25. 25.
    Murthy, V.N., Schikorski, T., Stevens, C.F., and Zhu, Y., (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682.PubMedCrossRefGoogle Scholar
  26. 26.
    Linden, D.J., and Connor, J.A., (1995) Long-term synaptic depression. Annu. Rev. Neurosci. 18:319–357.PubMedCrossRefGoogle Scholar
  27. 27.
    van Rossum MCW., Bi G.Q., and Turrigiano G.G., (2000) Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20:8812–8821PubMedGoogle Scholar
  28. 28.
    Rutherford, L.C., Nelson, S.B., Turrigiano, G.G. (1998) BDNF has opposite effects on the quantal amplitude of pyramidal interneuron excitatory synapes. Neuron 21: 3, 521–530.PubMedCrossRefGoogle Scholar
  29. 29.
    Hendry S.H.C., and Jones, E.G., (1986). Reduction in number of immunostained GABAergic neurons in deprived-eye dominance columns of monkey area 17. Nature 320:750–753.PubMedCrossRefGoogle Scholar
  30. 30.
    Hendry, S.H.C., and Jones, E.G., (1988) Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys. Neuron 1:701–712.PubMedCrossRefGoogle Scholar
  31. 31.
    Benevento, L.A., Bakkum, B.W., and Cohen, R.S., (1995) Gamma-aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res. 689:172–182.PubMedCrossRefGoogle Scholar
  32. 32.
    Hendry S.H.C., Huntsman, M-M., Viñuela, A., Möhler, G., de Bias, A.L., and Jones, E.G., (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J. Neurosci. 14:2383–2401.PubMedGoogle Scholar
  33. 33.
    Morales, B., Choi, S.Y., Kirkwood, A. (2002) Darkrearing alters the development of GABAergic transmission in visual cortex. J. Neurosci. 22 : 18, 8084–8090.PubMedGoogle Scholar
  34. 34.
    Marty, S., Berninger, B., Carroll, P., and Thoenen, H., (1996a,) GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16: 565–570.PubMedCrossRefGoogle Scholar
  35. 35.
    Marty, S., Carroll, P., Cellerino A., Castrén E., Staiger V., Thoenen, H., and Lindholm, D., (1996b). Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J. Neurosci. 16:675–687.PubMedGoogle Scholar
  36. 36.
    Rutherford, C.L, Dewan, A., Lauer, H.M., and Turrigiano, G.G., (1997) BDNF mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci. 17:4527–4535.PubMedGoogle Scholar
  37. 37.
    Huettner, J.E., and Baughman, R.W., (1986). Primary cultures of identified neurons from the visual cortex of postnatal rats. J. Neurosci. 6:3044–3060.PubMedGoogle Scholar
  38. 38.
    Jones, K.A., and Baughman, R.W., (1991) Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neuron sin culture. Neuron 7:593–603.PubMedCrossRefGoogle Scholar
  39. 39.
    Desai, N.S., Cudmore, R., Nelson, S.B., and Turrigiano, G.G., (2002) Critical Periods for experience-dependent synaptic scaling in visual cortex. Nature Neurosci. 5:783–789PubMedGoogle Scholar
  40. 40.
    Worley, P.F., Christy, B.A., Nakabeppu, Y., Bhat, R.V., Cole, A.J., and Baraban, J.M., (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc. Natl. Acad. Sci. U. S. A. 88:5106–5110.PubMedCrossRefGoogle Scholar
  41. 41.
    Caleo, M., Lodovichi, C., Maffei, L. (1999a) Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity. Eur. J. Neurosci. 11:8, 2979–2984PubMedCrossRefGoogle Scholar
  42. 42.
    Caleo, M., Lodovichi, C., Pizzorusso, T., and Maffei, L., (1999b) Expression of the transcription factor Zif268 in the visual cortex of monocularly-deprived rats: effects of nerve growth factor. Neuroscience 91:1017–1026.PubMedCrossRefGoogle Scholar
  43. 43.
    Daw, N.W., Fox, K., Sato, H., and Czepita, D., (1992) Critical period for monocular deprivation in the cat visual cortex. J. Neurophysiol. 67:197–202.PubMedGoogle Scholar
  44. 44.
    Fox, K., (1992) A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J. Neurosci. 12:1826–1838.PubMedGoogle Scholar
  45. 45.
    Stern, E.A., Maravall, M., and Svoboda, K., (2001) Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31:305–315.PubMedCrossRefGoogle Scholar
  46. 46.
    Hubel, D.H., and Wiesel, T.N., (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206:419–436.PubMedGoogle Scholar
  47. 47.
    Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., Maffei, L. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience : Dark rearing and monocular deprivation . Vision Res. 34(6), 709–720.PubMedCrossRefGoogle Scholar
  48. 48.
    Diamond, M.E., Armstrong-James, M., and Ebner, F.F., (1993) Experience-dependent plasticity in adult rat barrel cortex. Proa Natl. Acad. Sci. U. S. A. 90:2082–2086.CrossRefGoogle Scholar
  49. 49.
    Trachtenberg, J., Trepel, C., and Stryker, M.P., (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287:2029–2032.PubMedCrossRefGoogle Scholar
  50. 50.
    Gordon, J.A., and Stryker, M.P., (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16:3274–3286.PubMedGoogle Scholar
  51. 51.
    Katz, L.C., and Shatz, C.J., (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138.PubMedCrossRefGoogle Scholar
  52. 52.
    Reiter, H.O., and Stryker, M.P., (1988) Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc. Natl. Acad. Sci. U. S. A. 85:3623–3627.PubMedCrossRefGoogle Scholar
  53. 53.
    Hata Y, Tsumoto T, Stryker MP, (1999) Selective pruning of more active afferents when cat visual cortex is pharmacologicallyt inhibited. Neuron 22:375–381PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gina Turrigiano
    • 1
  1. 1.Department of Biology and Volen National Center for Complex SystemsBrandeis UniversityWalthamUSA

Personalised recommendations