Historical Overview: The Search for inhibitory neurons and their function

  • Masao Ito


Even though inhibition had long been recognized as a distinct process in the nervous system (see Sherrington1), the discovery of inhibitory synapses had to wait until the middle of the 20th century. In mammalian motoneurons, Eccles and his associates recorded inhibitory postsynaptic potentials (IPSPs) that form a mirror image of excitatory postsynaptic potentials (EPSPs)2.


Purkinje Cell Granule Cell Cerebellar Cortex Mossy Fiber Inhibitory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sherrington, C.S. (1906) Integrative Action of the Nervous System. (Yale Univ. Press, New Haven).Google Scholar
  2. 2.
    Brock, L.G., Coombs, J.S. and Eccles, J.C. (1952) The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460.Google Scholar
  3. 3.
    Eccles, J.C. (1962) Spinal neuron: synaptic connexions in relation to chemical transmitters and pharmacological responses. Proc. First Intern. Pharmacol. Meeting 8157–182.Google Scholar
  4. 4.
    Eccles, J.C., Fatt, P. and Koketsu, K. (1954) Cholinergic and inhibitory synapses in a pathway from motor axon collaterals to motoneurons. J. Physiol. (Lond.) 126,524–564.Google Scholar
  5. 5.
    Eccles, J.C., Fatt, P. and Landgren, S. (1956) Central pathway for direct inhibitory action on impulses in large afferent nerve fibres to muscle. J. Neurophysiol. 19, 75–98,PubMedGoogle Scholar
  6. 6.
    Ito, M. and Yoshida, M. (1964) The cerebellar-evoked monosynaptic inhibition of Deiters neurones. Experientia. 40, 762–764.Google Scholar
  7. 7.
    Aprison, M.H. and Werman, R. (1965) The distribution of glycine in cat spinal cord and roots. Life Sci. 4, 2075–2083.PubMedCrossRefGoogle Scholar
  8. 8.
    Obata, K. Ito, M., Ochi, R. and Sato, N. (1967) Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of g-aminobutryic acid on Deiters neurons. Exp. Brain Res. 4, 43–57PubMedCrossRefGoogle Scholar
  9. 9.
    Kuffler, S.W. and Edwards, C. (1958) Mechanism of gamma-aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol. 21, 589–610.PubMedGoogle Scholar
  10. 10.
    Watanabe. M„ Maemura. K„ Kanbara, K., Tamayama, T. and Hayasaki, H. (2002) GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Eccles, J.C., Eccles, R.M., Iggo, A. and Ito, M. (1961) Distribution of recurrent inhibition among motoneurones. J. Physiol. (Lond.) 159, 479–499.Google Scholar
  12. 12.
    Windhorst, U. (1990) Activation of Renshaw cells. Prog. Neurobiol. 35, 135–179.Google Scholar
  13. 13.
    Maltenfort, M.G., Heckman, C.J. and Rymer, W.Z. (1998) Decorrelating actions of renshaw intemeurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. J. Neurophysiol. 80, 309–323.PubMedGoogle Scholar
  14. 14.
    Andersen, P. and Eccles, J.C. (1962) Inhibitory phasing of neuronal discharge. Nature 196, 645–647.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson, D.M. and Wardron, I. (1968) Models for the generation of the motor ouutput pattern in flying locusts. Proc. IEEE 56,1058–1064.CrossRefGoogle Scholar
  16. 16.
    Lundberg, A. (1981) Half-center revisited. In: Regulatory Pathway of the CNS Principles of Motion and Organization, eds. J. Szentagothai, M. Parkovits, and J. Hamori. Adv. Physiol. Sci. 1,155–167.Google Scholar
  17. 17.
    Parker, D. and Grillner, S. (2000) Neuronal mechanisms of synaptic and network plasticity in the lamprey spinal cord. Prog. Brain Res. 125, 381–398.PubMedCrossRefGoogle Scholar
  18. 18.
    Butt, S.J.B., Lebret, J.M. and Liehn, O. (2002) Organization of left-right coordination in the mammaian locomotor network. Brain Res. Rev. 40, 107–117.PubMedCrossRefGoogle Scholar
  19. 19.
    Traub, R.D., Whittington, M.A., Colling, S.B., Buzsaki, G. and Jefferys, J.G. (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol (Lond.) 493, 471–484.Google Scholar
  20. 20.
    Soto-Trevino, C., Thoroughman, K.A., Marder, E. and Abbott, L.F. (2001) Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat. Neurosci. 4, 297–303.PubMedCrossRefGoogle Scholar
  21. 21.
    Selverston AI, Moulins M. (1985) Oscillatory neural networks. Annu Rev Physiol. 47, 29–48.PubMedCrossRefGoogle Scholar
  22. 22.
    Arshavsky, Y.I., (2003) Cellular and network properties in the functioning of the nervous system : from central patter generators to cognition. Brain.Res. Rec 41, 229–267.CrossRefGoogle Scholar
  23. 23.
    Koulakov, A.A., Raghavachari, S., Kepecs, A. and Lisman, J.E. (2002) Model for a robust neural integrator. Nat. Neurosci. 5, 775–782.PubMedCrossRefGoogle Scholar
  24. 24.
    Cannon, S.C., Robinson, D.A. and Shamma, S. (1983) A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49, 127–136.PubMedCrossRefGoogle Scholar
  25. 25.
    Cannon, S.C. and Robinson, D.A. (1985.25) An improved neural-network model for the neural integrator of the oculomotor system: more realistic neuron behavior. Biol. Cybern. 53, 93–108.PubMedCrossRefGoogle Scholar
  26. 26.
    Holstein, G.R., Martinelli, G.P. and Cohen, B. (1999) The ultrastructure of GABA-immunoreactive vestibular commissural neurons related to velocity storage in the monkey. Neuroscience 93, 171–181.PubMedCrossRefGoogle Scholar
  27. 27.
    Fujita M. (1982) Adaptive filter model of the cerebellum. Biol. Cybern. 45, 195–206.PubMedCrossRefGoogle Scholar
  28. 28.
    Marr, D.A. (1969) A theory of cerebellar cortex. J. Physiol (Lond.) 202, 437–470.Google Scholar
  29. 29.
    Albus, J.S. (1971) A theory of cerebellar function. Math. Biosci. 10, 25–26.CrossRefGoogle Scholar
  30. 30.
    Braitenberg, V. and Onesto, N. (1962) The cerebellar cortex as a timing organ. Discussion of a hypothesis. Proc. 1st Intern. Conf. Med. Cybern. (Giannini: Naples, Italy),pp 1-19.Google Scholar
  31. 31.
    Clifford, C.W.G. and Ibbotson, M.R. (2003) Fundamental mechanisms of visual motion detection: models, cells and functions. Progr. Neurobiol. 68, 409–437.CrossRefGoogle Scholar
  32. 32.
    Torre, V. and Poggio, T. (1978) A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. B 202, 409–416.CrossRefGoogle Scholar
  33. 33.
    Koch, C, Poggio, T. and Torre, V. (1983) Non-linear interactions in a dendritic tree: localization, timing and role in information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802.PubMedCrossRefGoogle Scholar
  34. 34.
    Eccles, M., Ito, M. and Szentagothai J. (1967) The Cerebellum as a Neuronal Machine. (Springer-Verlag: New York), p 209.Google Scholar
  35. 35.
    Ito, M. (2002) Controller-regulator model of the central nervous system. J. Integrative Neurosci. 1, 129–143.CrossRefGoogle Scholar
  36. 36.
    Yoshida, M. and Precht, W. (1971) Monosynaptic inhibition of neurons in the substantia nigra by caudate-nigral fibers. Brain Res. 32, 225–228.PubMedCrossRefGoogle Scholar
  37. 37.
    Ueki, A., Uno, M., Anderson, M. and Yoshida, M. (1977) Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra Experientia 33, 1480–1481.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaji R. (2001) Basal ganglia as a sensory gating devise for motor control, J. Med. Invest. 48, 142–146.PubMedGoogle Scholar
  39. 39.
    Hikosaka O., Takikawa Y., Kawagoe R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978.PubMedGoogle Scholar
  40. 40.
    Hikosaka, O., Takikawa, Y., and Kawagoe, R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978.PubMedGoogle Scholar
  41. 41.
    Scheibel, M.F. and Scheibel, A.B. (1958) Structural substrates for integrating patterns in the brain stem reticular core. In: Reticular Formation of the Brain, eds. H.H. Jasper et al. Little, Brown & Co. BostonGoogle Scholar
  42. 42.
    Ito, M., Udo, M. and Mano, N. (1970) Long inhibitory and excitatory pathways converging onto cat reticular and Deiters’ neurons and their relevance to reticulofugal axons. J. Neurophysiol. 33, 210–226.PubMedGoogle Scholar
  43. 43.
    Takakusaki, K., Kohyama, J., Matsuyama, K. and Mori, S. (2001) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 103, 511–527.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Masao Ito
    • 1
  1. 1.RIKEN Brain Science InstituteWako-shi, SaitamaJapan

Personalised recommendations