Skip to main content

Computational Mechanics

  • Chapter
  • 354 Accesses

Part of the book series: Applied Optimization ((APOP,volume 46))

Abstract

A systematic way for the derivation of variational principles in mechanics goes through the consideration of a potential energy or of a complementary energy function. The classical set of possibly nonlinear equations of mechanics from the one side, i.e., the compatibility equations, the equilibrium equations and the material laws, and, from the other side, the optimality conditions of the mathematical optimization theory are integrated in this approach. In fact, the governing relations of the problem either are taken into account in the derivation of the problem or they are produced from the optimality conditions of the associated energy optimization problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeli, H. and Park, H. (1998). Neurocomputing for design automation. CRC Press, Boca Raton Florida.

    Google Scholar 

  • Al-Fahed, A. M., Stavroulakis, G. E., and Panagiotopoulos, P. D. (1991). Hard and soft fingered robot grippers. Zeitschrift fuer Angew. Mathematik und Mechanik (ZAMM) 71(7/8):257–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Alart, P. (1993). Critères d’ injectivité et de surjectivité pour certaines applications de Rn dans lui même. Application a la mécanique du contact. RAIRO Mod. Math. et An. Num. 27:203–222.

    MathSciNet  MATH  Google Scholar 

  • Alessandri, C. and Mallardo, V. (1999). Crack identification in two-dimensional unilateral contact mechanics with the boundary element method. Computational Mechanics 24(2):100–109.

    Article  MATH  Google Scholar 

  • Antes, H. (1988). Anwendungen der Methode der Randelemente in der Elastodynamik und der Fluiddynamik. B.G. Teubner Verlag, Stuttgart.

    Book  MATH  Google Scholar 

  • Antes, H. and Panagiotopoulos, P. D. (1992). The boundary integral approach to static and dynamic contact problems. Equality and inequality methods. Birkhäuser, Basel-Boston-Berlin.

    Book  MATH  Google Scholar 

  • Antes, H., Steinfeld, B., and Tröndle, G. (1991). Recent developments in dynamic stress analyses by time domain BEM. Engineering Analysis with Boundary Elements 8(4):176–184.

    Article  Google Scholar 

  • Argyris, J. H. (1965). Continua and discontinua. In Proc. 1st Conf Matrix Meth. Struct. Mech. pages 66–80, Dayton, Ohio. Wright Petterson Air Force Base. AFFDL TR.

    Google Scholar 

  • Avdelas, A. V., Panagiotopoulos, P. D., and Kortesis, S. (1995). Neural networks for computing in elastoplastic analysis of structures. Meccanica 30:1–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Baiocchi, C. and Capelo, A. (1984). Variational and quasi variational inequalities. Applications to free boundary problems. J. Wiley and Sons, Chichester.

    Google Scholar 

  • Baniotopoulos, C. (1998). Analysis of above-ground pipelines on unilateral supports: A neural network approach. The International Journal of Pressure Vessels and Piping 75(1):43–48.

    Article  Google Scholar 

  • Bathe, K. J. (1996). Finite element procedures. Prentice—Hall, New Jersey.

    Google Scholar 

  • Bertsekas, D. and Tsitsiklis, J. (1989). Parallel and distributed computation: numerical methods. Prentice Hall, Englewood Cliffs NJ.

    MATH  Google Scholar 

  • Bisbos, C. D. (1995). A competitive game algorithm with five players for unilateral contact problems including the rotational and the thermal degrees of freedom. In Raous, M., Jean, M., and Moreau, J. J., editors, Contact mechanics pages 251–258, New York-London. Plenum Press.

    Google Scholar 

  • Christensen, P., Klarbring, A., Pang, J., and Strömberg, N. (1998). Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering 42:145–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Cocu, M. (1984). Existence of solutions of Signorini problems with friction. International Journal of Engineering Sciences 22:567.

    Article  MathSciNet  MATH  Google Scholar 

  • Cottle, R. W., Pang, J. S., and Stone, R. E. (1992). The linear complementarity problem. Academic Press, Boston.

    MATH  Google Scholar 

  • Dem’yanov, V. F., Stavroulakis, G. E., Polyakova, L. N., and Panagiotopoulos, P. D. (1996). Quasidifferentiability and nonsmooth modelling in mechanics, engineering and economics. Kluwer Academic, Dordrecht.

    Book  MATH  Google Scholar 

  • Dominguez, J. (1993). Boundary elements in dynamics. Computational Mechanics Publications and Elsevier Applied Science, Shouthampton and New York.

    MATH  Google Scholar 

  • Doudoumis, I., Mitsopoulou, E., and Charalambakis, N. (1995). The influence of the friction coefficients on the uniqueness of the solution of the unilateral contact problem. In Raous, M., Jean, M., and Moreau, J., editors, Contact mechanics pages 79–86, New York-London. Plenum Press.

    Google Scholar 

  • Duvaut, G. and Lions, J. L. (1972). Les inéquations en méchanique et en physique. Dunod, Paris.

    Google Scholar 

  • Facchinei, F., Fischer, A., and Kanzow, C. (1996). Inexact Newton methods for semismooth equations with applications to variational inequality problems. In DiPillo, G. and Giannessi, F., editors, Nonlinear Optimization and Applications pages 125–149, New York. Plenum Press.

    Google Scholar 

  • Fichera, G. (1972). Boundary value problems in elasticity with unilateral constraints volume VI a/2. Springer Verlag, Berlin. ed. by S. Flügge.

    Google Scholar 

  • Fischer, A. (1991). A special Newton-type optimization method. Optimization 24:269–284.

    Article  Google Scholar 

  • Fukushima, M. (1992). Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Mathematical Programming 53:99–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Glowinski, R. and LeTallec, P. (1989). Augmented Lagrangian and operatorsplitting methods for nonlinear mechanics. SIAM, Philadelphia.

    Book  Google Scholar 

  • Goeleven, D., Stavroulakis, G. E., and Panagiotopoulos, P. D. (1996). Solvability theory for a class of hemivariational inequalities involving copositive plus matrices. Applications in robotics. Mathematical Programming Ser. A, 75(3):441–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Goeleven, D., Stavroulakis, G. E., Salmon, G., and Panagiotopoulos, P. D. (1997). Solvability theory and projection methods for a class of singular variational inequalities. Elastostatic unilateral contact applications. Journal of Optimization Theory and Applications, 95(2):263–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashin, Z. (1962). The elastic moduli of heterogeneous materials. J. Applied Mechanics Trans. ASME Ser. E, 29:143–150.

    Article  MathSciNet  MATH  Google Scholar 

  • He, Q. C., Telega, J. J., and Curnier, A. (1996). Unilateral contact of two solids subject to large deformations: Formulation and existence results. Proceedings of the Royal Society of London /A 452(1955):2691–2718.

    Article  MathSciNet  Google Scholar 

  • Jarugek, J. (1983). Contact problems with bounded friction. Coercive case. Czech. Math. Journal 33:237.

    Google Scholar 

  • Jarugek, J. (1984). Contact problems with bounded friction. Semicoercive case. Czech. Math. Journal 34:619.

    Google Scholar 

  • Kalker, J. J. (1988). Contact mechanical algorithms. Communications in Applied Numerical Methods, 4:25–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalker, J. J. (1990). Three—dimensional elastic bodies in rolling contact. Kluwer Academic, Dordrecht Boston.

    Book  MATH  Google Scholar 

  • Kane, J. (1994). Boundary element analysis in engineering continuum mechanics. Prentice Hall, Englewood Cliffs NJ.

    Google Scholar 

  • Kanzow, C. (1994). Some equation-based methods for the nonlinear complementarity problem. Optimization Methods and Software 3:327–340.

    Article  Google Scholar 

  • Kanzow, C. (1996). Nonlinear complementarity as unconstrained optimization. Journal of Optimization Theory and Applications, 88:139–155.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanzow, C. and Kleinmichel, H. (January 1997). A new class of semismooth newton-type methods for nonlinear complementarity problems. Hamburger Beiträge zur Angewandten Mathematik, A Prepring 118:25 pp.

    Google Scholar 

  • Kanzow, C., Yamashita, N., and Fukushima, M. (1997). New NCP-functions and their properties. Journal of Optimization Theory and Applications 94(1):115–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Klarbring, A. (1986). A quadratic program in frictionless contact problems. International Journal of Engineering Sciences, 24:459–479.

    Article  MathSciNet  Google Scholar 

  • Klarbring, A. and Björkman, G. (1988). A mathematical programming approach to contact problem with friction and varying contact surface. Computers and Structures 30:1185–1198.

    Article  MATH  Google Scholar 

  • Klarbring, A., Mikeliè, A., and Shillor, M. (1991a). A global existence result for the quasistatic frictional contact problem with normal compliance. In International Series of Numerical Mathematics Vol. 101 page 85, Basel Boston. Birkhäuser Verlag.

    Google Scholar 

  • Klarbring, A., Mikeliè, A., and Shillor, M. (1991b). A global existence result for the quasistatic frictional contact problem with normal compliance. In DelPiero, G. and Maceri, F., editors, Unilateral Problems in Structural Mechanics IV pages 85–111, Basel Boston. Birkhäuser Verlag.

    Google Scholar 

  • Kortesis, S. and Panagiotopoulos, P. (1993). Neural networks for computing in structural analysis: methods and prospects of applications. International Journal for Numerical Methods in Engineering 36:2305–2318.

    Article  MATH  Google Scholar 

  • Kummer, B. (1988). Newton’s method for non-differentiable functions. In Guddat, J. and et al., editors, Mathematical Research, Advances in Mathematical Optimization pages 114–125, Berlin. Akademie Verlag.

    Google Scholar 

  • Kwack, B. M. and Lee, S. S. (1988). A complementarity problem formulation for two—dimensional frictional contact problems. Computers and Structures 28:469–480.

    Article  Google Scholar 

  • Ladèveze, P. (1995). Mecanique des structures nonlineaires. Hérmes, Paris.

    Google Scholar 

  • LeTallec, P. (1990). Numerical analysis of viscoelastic problems. Masson and Springer, Paris and Berlin.

    Google Scholar 

  • Leung, A., Guoqing, C., and Wanji, C. (1998). Smoothing Newton method for solving two- and three-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering 41:1001–1027.

    Article  MathSciNet  MATH  Google Scholar 

  • Manolis, G. and Beskos, D. (1988). Boundary element methods in elastodynamics. Unwin Hyman Ltd., London.

    Google Scholar 

  • Martins, J. A. C. and Oden, J. T. (1987). Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Analysis Theory Methods and Applications, 11(3):407–428.

    Article  MathSciNet  Google Scholar 

  • Mistakidis, E. and Stavroulakis, G. (1998). Nonconvex optimization in mechanics. Algorithms, heuristics and engineering applications by the F.E.M. Kluwer Academic, Dordrecht and Boston and London.

    Google Scholar 

  • Moreau, J. J. (1975). Application of convex analysis to the treatment of elastoplastic systems. In Germain, P. and Nayroles, B., editors, Application of methods of functional analysis to problems in mechanics pages 56–89, Berlin. Springer.

    Google Scholar 

  • Mosco, V. (1976). Implicit variational problems and quasi-variational inequalities. In Nonlinear operators and the calculus of variations pages 83–156, Berlin. Springer Verlag. Lect Notes in Math. 543.

    Google Scholar 

  • Murty, K. G. (1988). Linear complementarily, linear and nonlinear programming. Heldermann, Berlin.

    Google Scholar 

  • Nagurney, A. and Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications. Kluwer Academic Publishers, Boston.

    Book  Google Scholar 

  • Naniewicz, Z. (1993). On the existence of solutions to the continuum model of delamination. Nonlinear analysis 20(5):481–508.

    Article  MathSciNet  MATH  Google Scholar 

  • Neéas, J., Jarusek, J., and Haslinger, J. (1980). On the solution of the variational inequality to the Signorini problem with small friction. Bulletino U.M.I. 17B:796–811.

    Google Scholar 

  • Outrata, J. V. and Zowe, J. (1995). A Newton method for a class of quasi-variational inequalities. Computational Optimization and Applications 4:521.

    Article  MathSciNet  Google Scholar 

  • Panagiotopoulos, P. D. (1975). A nonlinear programming approach to the unilateral contact and friction boundary value problem in the theory of elasticity. Ing. Archiv 44:421–432.

    Article  MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos, P. D. (1985). Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser, Basel - Boston - Stuttgart. Russian translation, MIR Publ., Moscow 1988.

    Google Scholar 

  • Panagiotopoulos, P. D. (1993). Hemivariational inequalities. Applications in mechanics and engineering. Springer, Berlin - Heidelberg - New York.

    Book  MATH  Google Scholar 

  • Pang, J. (1990). Newton’s method for B-differentiable equations. Mathematics of Operations Research 15:311–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Pang, J. (1991). A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Mathematical Programming 51:101–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Pang, J. S. and Ralph, D. (1996). Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Mathematics of operations research 21(2):401–426.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, J. K. and Kwack, B. M. (1994). Three-dimensional frictional contact analysis using the homotopy method. ASME Journal of Applied Mechanics 61:703–709.

    Article  MATH  Google Scholar 

  • Partridge, P., Brebbia, C., and Wrobel, L. (1992). The dual reciprocity boundary element method. Computational Mechanics Publications and Elsevier, Southampton and London.

    MATH  Google Scholar 

  • Stavroulakis, G., Antes, H., and Panagiotopoulos, P. (1999). Transient elastodynamics around cracks including contact and friction. Computer Methods in Applied Mechanics and Engineering 177(3/4):427–440. Special Issue: Computational Modeling of Contact and Friction, Eds.: J.A.C. Martins and A. Klarbring.

    Google Scholar 

  • Stavroulakis, G. E. and Antes, H. (1999). Nonlinear boundary equation approach for inequality 2-D elastodynamics. Engineering Analysis with Boundary Elements 23(5–6):487–501.

    Article  MATH  Google Scholar 

  • Stavroulakis, G. E. and Antes, H. (2000). Nonlinear equation approach for inequality elastostatics. a 2-d bem implementation. Computers and Structures 75(6):631–646.

    Article  Google Scholar 

  • Stavroulakis, G. E., Avdelas, A. V., Panagiotopoulos, P. D., and Abdalla, K. M. (1997). A neural network approach to the modelling, calculation and identification of semi—rigid connections in steel structures. The Journal of Constructional Steel Research 44(1–2):91–106.

    Article  Google Scholar 

  • Stavroulakis, G. E., Panagiotopoulos, P. D., and Al-Fahed, A. M. (1991). On the rigid body displacements and rotations in unilateral contact problems and applications. Computers and Structures 40:599–614.

    Article  MATH  Google Scholar 

  • Telega, J. J. (1988). Topics on unilateral contact problems in elasticity and inelasticity. In Moreau, J. J. and Panagiotopoulos, P. D., editors, Nonsmooth Mechanics and Applications, CISM Lect. Notes. 302 pages 341–462. Springer, Wien New York.

    Google Scholar 

  • Telega, J. J. (1995). Quasi-static Signorini’s contact problem with friction and duality. In Raous, M., Jean, M., and Moreau, J., editors, Contact mechanics pages 199–214, New York-London. Plenum Press.

    Google Scholar 

  • Theocaris, P. S. and Panagiotopoulos, P. D. (1993). Neural networks for computing in fracture mechanics. Methods and prospects of applications. Computer Methods in Applied Mechanics and Engineering 106:213–228.

    Article  MATH  Google Scholar 

  • Zavarise, G., Wriggers, P., Stein, E., and Shreffer, B. A. (1992). Real contact mechanisms and finite element formulation - a coupled thermomechanical approach. International Journal of Numerical Methods in Engineering 35:767–785.

    Article  MATH  Google Scholar 

  • Zeidler, E. (1988). Nonlinear functional analysis and its applications. IV: Applications to mathematical physics. Springer Verlag, New York - Heidelberg.

    Book  MATH  Google Scholar 

  • Zhong, Z. H. and Mackerle, J. (1992). Static contact problems - a review. Engineering Computations 9:3–37.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stavroulakis, G.E. (2001). Computational Mechanics. In: Inverse and Crack Identification Problems in Engineering Mechanics. Applied Optimization, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0019-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0019-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4888-7

  • Online ISBN: 978-1-4615-0019-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics