Semiconductor Materials

  • Katsuaki Suganuma
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC, volume 74)


Si, having a diamond crystalline structure, is an indispensable semiconductor and has been a major player as a solid-state semiconductor for electronics since 1950s. For PE technology, however, Si semiconductors should be replaced by new materials that can be formulated into inks or modified into Si inks with a certain low-temperature manufacturing process.


Liquid Crystal Display Organic Semiconductor Charge Mobility Printing Technology Organic Thin Film Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Podzorov V, Sysoev SE, Loginova E, Pudalov VM, Gershenson ME (2003) Appl Phys Lett 83:3504CrossRefGoogle Scholar
  2. 2.
    Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T (2007) Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc 129:15732–15733CrossRefGoogle Scholar
  3. 3.
    Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S (2007) Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett 90:102120CrossRefGoogle Scholar
  4. 4.
    Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, Miwa K, Sato H, Yamano A, Matsushita T, Uemura T, Takeya J (2013) V-shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv Mater 25(44):6392–6397Google Scholar
  5. 5.
    Takeya J, Tsukagoshi K, Aoyagi Y, Takenobu T, Iwase Y (2005) Hall effect of quasi-hole gas in organic single-crystal transistors. Jpn J Appl Phys 44(46):L1393–L1396CrossRefGoogle Scholar
  6. 6.
    Hulea IN, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Frohlich polarons in organic single-crystal transistors. Nat Mater 5:982–986CrossRefGoogle Scholar
  7. 7.
    Nakayama K, Hirose Y, Soeda J, Yoshizumi M, Uemura T, Uno M, Li W, Kang MJ, Yamagishi M, Okada Y, Miyazaki E, Nakazawa Y, Nakao A, Takimiya K, Takeya J (2011) Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv Mater 23:1626–1629CrossRefGoogle Scholar
  8. 8.
    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 475:364–367CrossRefGoogle Scholar
  9. 9.
    Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J (2011) High electron mobility in air for N, N′-1H,1H-perfluorobutyldicyanoperylene carboxy-di-imide solution-crystallized thin-film transistors on hydrophobic surfaces. Adv Mater 23:3681–3685CrossRefGoogle Scholar
  10. 10.
    Yun SW, Kim JH, Shin S, Yang H, An B-K, Yang L, Park SY (2012) High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels. Adv Mater 24:911–915CrossRefGoogle Scholar
  11. 11.
    Klasens HA, Koelmansa H (1964) A tin oxide field-effect transistor. Solid-State Electron 7:701–702CrossRefGoogle Scholar
  12. 12.
    Hoffman RL, Norris BJ, Wager JF (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82:733–735CrossRefGoogle Scholar
  13. 13.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488CrossRefGoogle Scholar
  14. 14.
    Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300(5623):1269–1272CrossRefGoogle Scholar
  15. 15.
    Ohya Y, Niwa T, Ban T, Takahashi Y (2001) Thin film transistor of ZnO fabricated by chemical solution deposition. Jpn J Appl Phys 40:297–298CrossRefGoogle Scholar
  16. 16.
    Bashir A, Wobkenberg PH, Smith J, Ball JM, Adamopoulos G, Bradley DDC, Anthopoulos TD (2009) High-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv Mater 21:2226–2231CrossRefGoogle Scholar
  17. 17.
    Kim M-G, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 10:382–388CrossRefGoogle Scholar
  18. 18.
    Yang Y-H, Yang SS, Kao C-Y, Chou K-S (2010) Chemical and electrical properties of low-temperature solution-processed In-Ga-Zn-O thin-film transistors. IEEE Eelectron Device Lett 31(4):329–331CrossRefGoogle Scholar
  19. 19.
    Kim Y-H, Heo J-S, Kim T-H, Park S, Yoon M-H, Kim J, Oh MS, Yi G-R, Noh Y-Y, Park SK (2012) Flexible metal-oxide devices made by room temperature photochemical activation of sol–gel films. Nature 489:128–132CrossRefGoogle Scholar
  20. 20.
    Härting M, Zhang J, Gamota DR, Britton DT (2009) Fully printed silicon field effect transistors. Appl Phys Lett 94:193509CrossRefGoogle Scholar
  21. 21.
    Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang D, Miyasaka M, Takeuchi Y (2006) Solution-processed silicon films and transistors. Nature 440:783–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Katsuaki Suganuma
    • 1
  1. 1.Inst of Scientific & Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations