Circadian Photoreception: From Phototransduction to Behaviour

  • Hester C. van Diepen
  • Johanna H. Meijer
  • Stuart N. Peirson
  • Russell G. Foster
Part of the Springer Series in Vision Research book series (SSVR, volume 1)


Environmental light is detected by three classes of ocular photoreceptor, the rods and cones of the outer retina and photosensitive retinal ganglion cells (pRGCs) that utilise the photopigment melanopsin. In addition to their endogenous photosensitivity, pRGCs receive indirect inputs from the rods and cones. The primary role of the rods and cones is to collect light information for the construction of a visual image, whilst the pRGCs send direct projections to many regions of the brain to regulate nonimage-forming responses to light, including the entrainment of circadian rhythms. The master circadian pacemaker of mammals resides within the suprachiasmatic nuclei (SCN), and light information is transmitted from the pRGCs via their axonal projections which form the retinohypothalamic tract. Neurones within the SCN respond to retinal illumination with changes in electrical activity showing characteristic fast-transient components at the light transitions and a sustained response throughout light exposure. Until recently it was assumed that the fast-transient responses were driven by the rods and/or cones, via their inputs to the pRGCs, whilst the sustained responses to light were mediated by melanopsin. However, more recent studies show that both transient and sustained responses can be generated in the absence of melanopsin, suggesting a significant level of functional redundancy between photoreceptor classes. Although SCN electrical activity appears normal in melanopsin-deficient mice, these animals show attenuated light-induced phase-shifting response in behavioural activity. Collectively these findings raise intriguing questions about how different classes of retinal photoreceptor interact to encode nonimage-forming responses to light and suggest that recordings of multiunit activity at the level of the SCN do not entirely mirror the effects of light on circadian behaviour.


Circadian Photoreceptors Melanopsin Suprachiasmatic nuclei (SCN) Electrophysiology Photoentrainment pRGC Retina Retinohypothalamic tract (RHT) Light 



α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


cAMP response element binding


Geniculohypothalamic tract


Inner plexiform layer


Mitogen-activated protein kinase


Mid-wavelength sensitive


Night-time application of N-methyl-d-aspartate


Nitric oxide




Pituitary adenylate cyclase-activating peptide


Photosensitive retinal ganglion cell


Retinal degeneration


Retinal ganglion cell


Retinohypothalamic tract


Suprachiasmatic nuclei


Transient receptor potential


Transcriptional-translational feedback loop


Ultraviolet sensitive


Vertebrate ancient


  1. 1.
    Van den Pol AN. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol. 1980;191(4):661–702. Epub 1980/06/15.PubMedGoogle Scholar
  2. 2.
    Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1–2):172–91. Epub 2001/10/13.PubMedGoogle Scholar
  3. 3.
    van Diepen HC, Ramkisoesning A, et al. Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors. FASEB J. 2013;27(10):4204–12.PubMedGoogle Scholar
  4. 4.
    Lowrey PL, Takahashi JS. Genetics of circadian rhythms in Mammalian model organisms. Adv Genet. 2011;74:175–230. Epub 2011/09/20.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Lamb TD, Pugh Jr EN. Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci. 2006;47(12):5137–52.PubMedGoogle Scholar
  6. 6.
    Soni BG, Philp AR, Knox BE, Foster RG. Novel retinal photoreceptors. Nature. 1998;394:27–8.PubMedGoogle Scholar
  7. 7.
    Foster RG, Provencio I, Hudson D, Fiske S, DeGrip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. 1991;169(1):39–50.PubMedGoogle Scholar
  8. 8.
    Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332(1):6–11.PubMedGoogle Scholar
  9. 9.
    Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284(5413):502–4. Epub 1999/04/16.PubMedGoogle Scholar
  10. 10.
    Provencio I, Foster RG. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res. 1995;694(1–2):183–90.PubMedGoogle Scholar
  11. 11.
    Provencio I, Wong S, Lederman AB, Argamaso SM, Foster RG. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res. 1994;34(14):1799–806.PubMedGoogle Scholar
  12. 12.
    Foster RG. Shedding light on the biological clock. Neuron. 1998;20(5):829–32.PubMedGoogle Scholar
  13. 13.
    Foster RG. Keeping an eye on the time: the Cogan Lecture. Invest Ophthalmol Vis Sci. 2002;43(5):1286–98.PubMedGoogle Scholar
  14. 14.
    Foster RG, Hankins MW. Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res. 2002;21(6):507–27.PubMedGoogle Scholar
  15. 15.
    Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.PubMedGoogle Scholar
  16. 16.
    Sekaran S, Foster RG, Lucas RJ, Hankins MW. Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol. 2003;13(15):1290–8. Epub 2003/08/09.PubMedGoogle Scholar
  17. 17.
    Peirson SN, Thompson S, Hankins MW, Foster RG. Mammalian photoentrainment: results, methods, and approaches. Methods Enzymol. 2005;393:697–726.PubMedGoogle Scholar
  18. 18.
    Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4:621–6.PubMedGoogle Scholar
  19. 19.
    Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424(6944):75–81.Google Scholar
  20. 20.
    Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433(7027):749–54. Epub 2005/02/18.PubMedGoogle Scholar
  21. 21.
    Hankins MW, Lucas RJ. The primary visual pathway in humans is regulated according to long-term light exposure through the action of a non-classical photopigment. Curr Biol. 2002;12:191–8.PubMedGoogle Scholar
  22. 22.
    Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007;17(24):2122–8.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95(1):340–5.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG. Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position. Brain Res Mol Brain Res. 2002;107(2): 128–36.PubMedGoogle Scholar
  25. 25.
    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.PubMedGoogle Scholar
  26. 26.
    Semo M, Munoz Llamosas M, Foster RG, Jeffery G. Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer. Vis Neurosci. 2005; 22(1):111–6.PubMedGoogle Scholar
  27. 27.
    Pires SS, Shand J, Bellingham J, Arrese C, Turton M, Peirson S, et al. Isolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart). Proc Biol Sci. 2007;274(1627):2791–9.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hughes S, Hankins MW, Foster RG, Peirson SN. Melanopsin phototransduction: slowly emerging from the dark. Prog Brain Res. 2012;199:19–40.PubMedGoogle Scholar
  29. 29.
    Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR. Melanopsin forms a functional short-wavelength photopigment. Biochemistry. 2003;42(44):12734–8.PubMedGoogle Scholar
  30. 30.
    Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW. Addition of human melanopsin renders mammalian cells photoresponsive. Nature. 2005;433(7027):741–5.PubMedGoogle Scholar
  31. 31.
    Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T. Illumination of the melanopsin signaling pathway. Science. 2005;307(5709):600–4. Epub 2005/02/01.PubMedGoogle Scholar
  32. 32.
    Isoldi MC, Rollag MD, Castrucci AM, Provencio I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A. 2005;102(4): 1217–21.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Do MT, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, et al. Photon capture and signalling by melanopsin retinal ganglion cells. Nature. 2009;457(7227):281–7. Epub 2009/01/02.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol. 2003;460(3):380–93. Epub 2003/04/15.PubMedGoogle Scholar
  35. 35.
    Wong KY, Dunn FA, Graham DM, Berson DM. Synaptic influences on rat ganglion-cell photoreceptors. J Physiol. 2007;582(Pt 1):279–96. Epub 2007/05/19.PubMedGoogle Scholar
  36. 36.
    Schmidt TM, Kofuji P. Differential cone pathway influence on intrinsically photosensitive retinal ganglion cell subtypes. J Neurosci. 2010;30(48):16262–71. Epub 2010/12/03.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Brown RL. Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci. 2006;24(4):1117–23. Epub 2006/08/26.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, et al. Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol. 2007;17(11):981–8. Epub 2007/05/26.PubMedGoogle Scholar
  39. 39.
    Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424(6944):76–81. Epub 2003/06/17.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 2002; 298(5601):2213–6. Epub 2002/12/14.PubMedGoogle Scholar
  41. 41.
    Jacobs GH, Neitz J, Deegan 2nd JF. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature. 1991;353(6345):655–6. Epub 1991/10/17.PubMedGoogle Scholar
  42. 42.
    Jacobs GH, Deegan 2nd JF. Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vision Res. 1994;34(11):1433–41. Epub 1994/06/01.PubMedGoogle Scholar
  43. 43.
    Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433(7027):745–9. Epub 2005/01/28.PubMedGoogle Scholar
  44. 44.
    Bridges CD. Visual pigments of some common laboratory mammals. Nature. 1959;184 Suppl 22:1727–8. Epub 1959/11/28.PubMedGoogle Scholar
  45. 45.
    Dillon J, Ortwerth BJ, Chignell CF, Reszka KJ. Electron paramagnetic resonance and spin trapping investigations of the photoreactivity of human lens proteins. Photochem Photobiol. 1999;69(2):259–64. Epub 1999/02/27.PubMedGoogle Scholar
  46. 46.
    Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008; 453(7191):102–5. Epub 2008/04/25.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP. Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS One. 2008;3(9):e3153. Epub 2008/09/06.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One. 2008;3(6):e2451. Epub 2008/06/12.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Ibata Y, Okamura H, Tanaka M, Tamada Y, Hayashi S, Iijima N, et al. Functional morphology of the suprachiasmatic nucleus. Front Neuroendocrinol. 1999;20(3):241–68. Epub 1999/08/06.PubMedGoogle Scholar
  50. 50.
    Morin CL, Dolina S, Robertson RT, Ribak CE. An inbred epilepsy-prone substrain of BALB/c mice shows absence of the corpus callosum, an abnormal projection to the basal forebrain, and bilateral projections to the thalamus. Cereb Cortex. 1994;4(2):119–28. Epub 1994/03/01.PubMedGoogle Scholar
  51. 51.
    Moore RY, Halaris AE, Jones BE. Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol. 1978;180(3):417–38. Epub 1978/08/01.PubMedGoogle Scholar
  52. 52.
    Moore RY. Entrainment pathways and the functional organization of the circadian system. Prog Brain Res. 1996;111:103–19. Epub 1996/01/01.PubMedGoogle Scholar
  53. 53.
    Hannibal J. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 2002; 309(1):73–88. Epub 2002/07/12.PubMedGoogle Scholar
  54. 54.
    Colwell CS, Menaker M. NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J Biol Rhythms. 1992;7(2):125–36. Epub 1992/01/01.PubMedGoogle Scholar
  55. 55.
    Ebling FJ. The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol. 1996;50(2–3):109–32. Epub 1996/10/01.PubMedGoogle Scholar
  56. 56.
    Obrietan K, Impey S, Storm DR. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci. 1998;1(8):693–700. Epub 1999/04/10.PubMedGoogle Scholar
  57. 57.
    de Vries MJ, Treep JA, de Pauw ES, Meijer JH. The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids. Brain Res. 1994;642(1–2):206–12. Epub 1994/04/11.PubMedGoogle Scholar
  58. 58.
    Johnson RF, Moore RY, Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988;460(2):297–313. Epub 1988/09/20.PubMedGoogle Scholar
  59. 59.
    Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science. 1994;266(5191): 1713–7. Epub 1994/12/09.PubMedGoogle Scholar
  60. 60.
    Shirakawa T, Moore RY. Responses of rat suprachiasmatic nucleus neurons to substance P and glutamate in vitro. Brain Res. 1994;642(1–2):213–20. Epub 1994/04/11.PubMedGoogle Scholar
  61. 61.
    Cahill GM, Menaker M. Kynurenic acid blocks suprachiasmatic nucleus responses to optic nerve stimulation. Brain Res. 1987;410(1):125–9. Epub 1987/04/28.PubMedGoogle Scholar
  62. 62.
    Shibata S, Liou SY, Ueki S. Influence of excitatory amino acid receptor antagonists and of baclofen on synaptic transmission in the optic nerve to the suprachiasmatic nucleus in slices of rat hypothalamus. Neuropharmacology. 1986;25(4):403–9. Epub 1986/04/01.PubMedGoogle Scholar
  63. 63.
    Shirakawa T, Moore RY. Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci Lett. 1994;178(1):47–50. Epub 1994/08/29.PubMedGoogle Scholar
  64. 64.
    Mintz EM, Albers HE. Microinjection of NMDA into the SCN region mimics the phase shifting effect of light in hamsters. Brain Res. 1997;758(1–2):245–9. Epub 1997/05/30.PubMedGoogle Scholar
  65. 65.
    Hannibal J, Moller M, Ottersen OP, Fahrenkrug J. PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol. 2000;418(2):147–55. Epub 2000/03/04.PubMedGoogle Scholar
  66. 66.
    Harrington ME, Hoque S, Hall A, Golombek D, Biello S. Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci. 1999;19(15):6637–42. Epub 1999/07/22.PubMedGoogle Scholar
  67. 67.
    Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, et al. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci. 1997;17(7):2637–44. Epub 1997/04/01.PubMedGoogle Scholar
  68. 68.
    Piggins HD, Marchant EG, Goguen D, Rusak B. Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neurosci Lett. 2001; 305(1):25–8. Epub 2001/05/18.PubMedGoogle Scholar
  69. 69.
    Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci U S A. 1999;96(23):13468–73. Epub 1999/11/11.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kopp MD, Meissl H, Dehghani F, Korf HW. The pituitary adenylate cyclase-activating polypeptide modulates glutamatergic calcium signalling: investigations on rat suprachiasmatic nucleus neurons. J Neurochem. 2001;79(1):161–71. Epub 2001/10/12.PubMedGoogle Scholar
  71. 71.
    Mintz EM, Marvel CL, Gillespie CF, Price KM, Albers HE. Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J Neurosci. 1999;19(12):5124–30. Epub 1999/06/15.PubMedGoogle Scholar
  72. 72.
    Colwell CS, Foster RG, Menaker M. NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Res. 1991;554(1–2):105–10. Epub 1991/07/19.PubMedGoogle Scholar
  73. 73.
    Mikkelsen JD, Larsen PJ, Mick G, Vrang N, Ebling FJ, Maywood ES, et al. Gating of retinal inputs through the suprachiasmatic nucleus: role of excitatory neurotransmission. Neurochem Int. 1995;27(3):263–72. Epub 1995/09/01.PubMedGoogle Scholar
  74. 74.
    Pennartz CM, Hamstra R, Geurtsen AM. Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. J Physiol. 2001;532(Pt 1): 181–94. Epub 2001/04/03.PubMedGoogle Scholar
  75. 75.
    Cui LN, Dyball RE. Synaptic input from the retina to the suprachiasmatic nucleus changes with the light–dark cycle in the Syrian hamster. J Physiol. 1996;497(Pt 2):483–93. Epub 1996/12/01.PubMedGoogle Scholar
  76. 76.
    Tominaga K, Geusz ME, Michel S, Inouye ST. Calcium imaging in organotypic cultures of the rat suprachiasmatic nucleus. Neuroreport. 1994;5(15):1901–5. Epub 1994/10/03.PubMedGoogle Scholar
  77. 77.
    Colwell CS. NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci. 2001;13(7):1420–8. Epub 2001/04/12.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Meijer JH, Watanabe K, Schaap J, Albus H, Detari L. Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci. 1998;18(21):9078–87. Epub 1998/10/24.PubMedGoogle Scholar
  79. 79.
    Prosser RA, McArthur AJ, Gillette MU. cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects. Proc Natl Acad Sci U S A. 1989; 86(17):6812–5. Epub 1989/09/01.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Amir S. Blocking NMDA receptors or nitric oxide production disrupts light transmission to the suprachiasmatic nucleus. Brain Res. 1992;586(2):336–9. Epub 1992/07/24.PubMedGoogle Scholar
  81. 81.
    Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU. Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci. 1997;17(2):667–75. Epub 1997/01/15.PubMedGoogle Scholar
  82. 82.
    Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A. 2002;99(11):7728–33. Epub 2002/05/29.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Aggelopoulos NC, Meissl H. Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions. J Physiol. 2000;523(Pt 1): 211–22. Epub 2000/02/16.PubMedGoogle Scholar
  84. 84.
    Meijer JH, Groos GA, Rusak B. Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster. Brain Res. 1986;382(1):109–18. Epub 1986/09/10.PubMedGoogle Scholar
  85. 85.
    Meijer JH, Rusak B, Ganshirt G. The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Res. 1992;598 (1–2):257–63. Epub 1992/12/11.PubMedGoogle Scholar
  86. 86.
    Nakamura TJ, Fujimura K, Ebihara S, Shinohara K. Light response of the neuronal firing activity in the suprachiasmatic nucleus of mice. Neurosci Lett. 2004;371(2–3):244–8. Epub 2004/11/03.PubMedGoogle Scholar
  87. 87.
    Drouyer E, Rieux C, Hut RA, Cooper HM. Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs. J Neurosci. 2007;27(36):9623–31. Epub 2007/09/07.PubMedGoogle Scholar
  88. 88.
    Mure LS, Rieux C, Hattar S, Cooper HM. Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms. 2007;22(5):411–24. Epub 2007/09/19.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Groos GA, Meijer JH. Effects of illumination on suprachiasmatic nucleus electrical discharge. Ann N Y Acad Sci. 1985;453:134–46. Epub 1985/01/01.PubMedGoogle Scholar
  90. 90.
    Groos G, Mason R. Maintained discharge of rat suprachiasmatic neurons at different adaptation levels. Neurosci Lett. 1978;8(1):59–64. Epub 1978/04/01.PubMedGoogle Scholar
  91. 91.
    Brown TM, Wynne J, Piggins HD, Lucas RJ. Multiple hypothalamic cell populations encoding distinct visual information. J Physiol. 2011;589(Pt 5):1173–94. Epub 2011/01/13.PubMedGoogle Scholar
  92. 92.
    Meijer JH, Rusak B, Harrington ME. Photically responsive neurons in the hypothalamus of a diurnal ground squirrel. Brain Res. 1989;501(2):315–23. Epub 1989/11/06.PubMedGoogle Scholar
  93. 93.
    Jiao YY, Lee TM, Rusak B. Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus). Brain Res. 1999;817(1–2): 93–103. Epub 1999/01/16.PubMedGoogle Scholar
  94. 94.
    Jiao YY, Rusak B. Electrophysiology of optic nerve input to suprachiasmatic nucleus neurons in rats and degus. Brain Res. 2003;960(1–2):142–51. Epub 2002/12/31.PubMedGoogle Scholar
  95. 95.
    Nakamura T, Kawagoe Y, Matsuda T, Ueda Y, Koide H. Low-density lipoprotein apheresis in a patient with arteriosclerosis obliterans and light chain deposition disease. Clin Nephrol. 2004;61(6):429–33. Epub 2004/07/01.PubMedGoogle Scholar
  96. 96.
    van Oosterhout F, Fisher SP, van Diepen HC, Watson TS, Houben T, Vanderleest HT, et al. Ultraviolet light provides a major input to non-image-forming light detection in mice. Curr Biol. 2012;22(15):1397–402. Epub 2012/07/10.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Harrington ME. The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev. 1997; 21(5):705–27. Epub 1997/11/14.PubMedGoogle Scholar
  98. 98.
    Mosko SS, Jacobs BL. Midbrain raphe neurons: spontaneous activity and response to light. Physiol Behav. 1974;13(4):589–93. Epub 1974/10/01.PubMedGoogle Scholar
  99. 99.
    Trejo LJ, Cicerone CM. Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res. 1984;300(1):49–62. Epub 1984/05/21.PubMedGoogle Scholar
  100. 100.
    Takahashi JS, DeCoursey PJ, Bauman L, Menaker M. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature. 1984; 308(5955):186–8. Epub 1984/03/08.PubMedGoogle Scholar
  101. 101.
    Decoursey PJ. Phase control of activity in a rodent. Cold Spring Harb Symp Quant Biol. 1960;25:49–55. Epub 1960/01/01.PubMedGoogle Scholar
  102. 102.
    Nelson DE, Takahashi JS. Integration and saturation within the circadian photic entrainment pathway of hamsters. Am J Physiol. 1999;277(5 Pt 2):R1351–61. Epub 1999/11/24.PubMedGoogle Scholar
  103. 103.
    Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Guler AD, et al. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron. 2010; 66(3):417–28. Epub 2010/05/18.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol. 1991;169(1):39–50. Epub 1991/07/01.Google Scholar
  105. 105.
    Ebihara S, Tsuji K. Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. 1980;24(3):523–7. Epub 1980/03/01.PubMedGoogle Scholar
  106. 106.
    Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, et al. Role of melanopsin in circadian responses to light. Science. 2002;298(5601):2211–3. Epub 2002/12/14.PubMedGoogle Scholar
  107. 107.
    Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci. 2010;13(9):1107–12. Epub 2010/08/17.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Dollet A, Albrecht U, Cooper HM, Dkhissi-Benyahya O. Cones are required for normal temporal responses to light of phase shifts and clock gene expression. Chronobiol Int. 2010;27(4):768–81. Epub 2010/06/22.PubMedGoogle Scholar
  109. 109.
    Dkhissi-Benyahya O, Gronfier C, De Vanssay W, Flamant F, Cooper HM. Modeling the role of mid-wavelength cones in circadian responses to light. Neuron. 2007;53(5):677–87. Epub 2007/03/03.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Tsai JW, Hannibal J, et al. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(−/−) mice. PLoS Biol. 2009;7(6).Google Scholar
  111. 111.
    Lupi D, Semo M, et al. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging. 2012;33(2):383–92.PubMedGoogle Scholar
  112. 112.
    Mrosovsky N, Hattar S. Impaired masking responses to light in melanopsin‐knockout mice. Chronobiol Int. 2003;20(6):989–99.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hester C. van Diepen
    • 1
  • Johanna H. Meijer
    • 1
  • Stuart N. Peirson
    • 2
  • Russell G. Foster
    • 2
  1. 1.Laboratory for Neurophysiology, Department of Molecular Cell BiologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West WingUniversity of Oxford, John Radcliffe HospitalOxfordUK

Personalised recommendations