Advertisement

The Heat Equation

  • Rainer Kress
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 82)

Abstract

The temperature distribution u in a homogeneous and isotropic heat conducting medium with conductivity k, heat capacity c, and mass density ρ satisfies the partial differential equation
$${ \partial u \over \partial t} =\kappa \varDelta u$$
where κ = kc ρ.

References

  1. 7.
    Arnold, D.N., and Noon, D.N.: Coercitivity of the single layer heat potential. J. Comput. Math. 7, 100–104 (1989).MathSciNetMATHGoogle Scholar
  2. 13.
    Baderko, E.A.: Parabolic problems and boundary integral equations. Math. Meth. in the Appl. Sci. 20, 449–459 (1997).MathSciNetCrossRefMATHGoogle Scholar
  3. 25.
    Cannon, J.R.: The One-Dimensional Heat Equation. Addison-Wesley, Menlo Park 1984.CrossRefMATHGoogle Scholar
  4. 34.
    Costabel, M.: Boundary integral operators for the heat equation. Integral Eq. and Operator Theory 13, 498–552 (1990).MathSciNetCrossRefMATHGoogle Scholar
  5. 35.
    Costabel, M., and Saranen, J.: Parabolic boundary integral operators symbolic representation and basic properties. Integral Equations Operator Theory 40, 185–211 (2001).MathSciNetCrossRefMATHGoogle Scholar
  6. 58.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs 1964.MATHGoogle Scholar
  7. 62.
    Gevrey, M.: Sur les équations aux dérivées partielles du type parabolique. J. de Math. 9, 305–471 (1913).Google Scholar
  8. 100.
    Holmgren, E.: Sur l’équation de la propagation de la chaleur. Arkiv Mat. Fysik. 4, 14, 1–11 (1908).Google Scholar
  9. 101.
    Holmgren, E.: Sur l’équation de la propagation de la chaleur II. Arkiv Mat. Fysik. 4, 18, 1–28 (1908).Google Scholar
  10. 103.
    Hsiao, G.C., and Saranen, J.: Boundary integral solution of the two-dimensional heat equation. Math. Meth. in the Appl. Sciences 16, 87–114 (1993).MathSciNetCrossRefMATHGoogle Scholar
  11. 179.
    Müntz, C.H.: Zum dynamischen Wärmeleitungsproblem. Math. Zeit. 38, 323–337 (1934).CrossRefGoogle Scholar
  12. 193.
    Pogorzelski, W.: Integral equations and their applications. Pergamon Press, Oxford 1966.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rainer Kress
    • 1
  1. 1.Institut für Numerische und AngewandteGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations