UWB Receiver Design

Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In this chapter, we present the design of an UWB receiver based on synchronous sampling that consists of a sampling mixer integrated with a local strobe-pulse generator and a baseband filter and amplifier.It is realized in a single circuit board using microstrip line, CPW, slot line, and coupled slot lines, and is compact and low cost. The receiver achieves a conversion loss of 4.5-7.5 dB (without baseband amplifier) and conversion gain from 6.5-9.5 dB (with amplifier) across a 5.5-GHz RF bandwidth, dynamic range of more than 50 dB, and low harmonic distortion in the baseband output signal. Its performance in down-converting signals is comparable to a commercial sampling scope, yet with much significantly smaller size and lower cost. The design of the strobe pulse generators for sampling applications requiring low PRF is also presented. Detailed design of the sampling mixer is described. Moreover, a distributed amplifier suitable for UWB receivers is discussed. The designed amplifier is characterized completely in the time domain under non-sinusoidal signal operation necessary for UWB applications. It has a highly linear transmission phase and produces amplified signals which resemble faithfully the input UWB pulses, demonstrating its suitability for UWB applications.


Pulse Repetition Frequency Local Oscillator Return Loss Conversion Loss Sampling Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Daniels, D.J.: Surface Penetrating Radar. IEEE Press, London (1996)Google Scholar
  2. 2.
    Taylor, J.D.: Introduction to Ultra-Wideband Radar Systems. CRC Press, Boca Raton (1995)Google Scholar
  3. 3.
    Abuasaker, S., Kompa, G.: A high sensitive receiver for baseband pulse microwave radar sensor using hybrid technology. IEEE Radar Conference Proceedings, pp. 121–124. (2002)Google Scholar
  4. 4.
    Weingarten, K.J., Rodwell, M.J.W., Bloom, D.M.: Picosecond optical sampling of GaAs integrated circuits. IEEE J. Quantum Electron. 24(2):198–220 (February 1988)CrossRefGoogle Scholar
  5. 5.
    Kamegawa, M., Giboney, K., Karin, J., Allen, S., Case, M., Yu, R., Rodwell, M.J.W., Bowers, J.E.: Picosecond GaAs monolithic optoelectronic sampling circuit. IEEE Photonics Tech. Lett. 3(6):567–569 (June 1991)CrossRefGoogle Scholar
  6. 6.
    Akos, D.M., Tsui, J.B.Y.: Design and implementation of a direct digitization GPS receiver front end. IEEE Trans. Microw. Theory Tech. 44(12):2334–2339 (December 1996)CrossRefGoogle Scholar
  7. 7.
    Taylor, J.D.: Ultra-Wideband Radar Technology. CRC Press, Boca Raton (2001)Google Scholar
  8. 8.
    Grove, W.M.: Sampling for oscilloscopes and other RF systems: DC through X-band. IEEE Trans. Microw. Theory Tech. MTT-14(12):629–635 (December 1966)CrossRefGoogle Scholar
  9. 9.
    Merkelo, J., Hall, R.D.: Broad-band thin-film signal sampler. IEEE J. Solid-State Circuits. SC-7(1):50–54 (February 1972)CrossRefGoogle Scholar
  10. 10.
    Akers, N.P.: RF sampling gates. A brief reviw. IEE Proc. 133(1):45–49 (January 1986)Google Scholar
  11. 11.
    Bologlu, A.: A 26.5-GHz automatic frequency counter with enhanced dynamic range. Hewlett-Packard J., 20–22 (April 1980)Google Scholar
  12. 12.
    Gilchrist, B.E., Fildes, R D., Galli, J.G.: The use of sampling techniques for miniaturized microwave synthesis applications. In 1982 IEEE MTT-S International Microwave Symposium Digest, pp. 431–433 (1982)Google Scholar
  13. 13.
    Madani, K., Aichison, C.S.: A 20GHz Microwave Sampler. IEEE Trans. Microw. Theory Tech. 40(10):1960–1963 (October 1992)CrossRefGoogle Scholar
  14. 14.
    Moore, S.E., Gilchrist, B.E., Galli, J.G. Microwave sampling effective for ultrabroadband frequency conversion, MSN & CT, pp. 113–126 (February 1986)Google Scholar
  15. 15.
    Gibson, S.R.: Gallium arsenide lowers cost and improves performance of microwave counters. Hewlett-Packard J. 1986, 4–10 (February 1986)Google Scholar
  16. 16.
    Shakouri, M.S., Black, A., Auld, B.A., Bloom, D. M.: 500 GHz GaAs MMIC sampling wafer probe. Electron. Lett. 29(6):557-558 (March 1993)CrossRefGoogle Scholar
  17. 17.
    Rodwell, M.J.W., Kamegawa, M., Yu, R., Case, M., Carman, E., Giboney, K.S.: GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling. IEEE Trans. Microw. Theory Tech. 39(7):1194–1204 (July 1991)CrossRefGoogle Scholar
  18. 18.
    Konishi, Y., Kamegawa, M., Case, M., Yu, R., Allen, S.T., Rodwell, M.J.W.: A broadband free-space millimeter-wave vector transmission measurement system. IEEE Trans. Microw. Theory Tech. 42(7):1131–1139 (July 1994)CrossRefGoogle Scholar
  19. 19.
    Miura, A.: Monolithic sampling head IC. IEEE Trans. Microw. Theory Tech. 38(12):1980–1985 (December 1990)CrossRefGoogle Scholar
  20. 20.
    Marsland, R.A., Valdivia, V., Madden, C.J., Rodwell, M.J.W., Bloom, D.M.: 130 GHz GaAs monolithic integrated circuit sampling head. Appl. Phys. Lett. 55(6):592–594 (August 1989)CrossRefGoogle Scholar
  21. 21.
    Abele, P., Birk, M., Behammer, D., Kibbel, H., Trasser, A., Maier, P., Schad, K.-B., Sönmez, E., Schumacher, H.: Sampling circuit on silicon substrate for frequencies beyond 50 GHz. IEEE MTT-S International Microwave Symposium Digest, pp. 1681–1684 (2002)Google Scholar
  22. 22.
    Pärssinen, A., Magoon, R., Long, S.I., Porra, V.: A 2-GHz subharmonic sampler for signal downconversion. IEEE Trans. Microw. Theory Tech. 45(12):2344–2351 (December 1997)CrossRefGoogle Scholar
  23. 23.
    Lee, J.S., Nguyen, Cam.: A low-cost uniplanar sampling down-converter with internal local oscillator, pulse generator, and IF amplifier. IEEE Trans. Microw. Theory Tech. 49(2):390–392 (February 2001)CrossRefGoogle Scholar
  24. 24.
    Han, J., Nguyen, C.: Integrated balanced sampling circuit for ultra-wideband communications and radar systems. IEEE Microw. Wireless Compon. Lett. 14(10):460–462 (October 2004)CrossRefGoogle Scholar
  25. 25.
    Han, J.W., Nguyen, C.: Coupled-Slotline-Hybrid Sampling Mixer Integrated with Step-Recovery-Diode Pulse Generator for UWB Applications. IEEE Trans. Microw. Theory Tech. MTT-53(6):1875–1882 (June 2005)CrossRefGoogle Scholar
  26. 26.
    Lee, J.S., Nguyen, C., Scullion, T.: Impulse ground penetrating radar for nondestructive evaluation of pavements. IEEE MTT-S International Microwave Symposium Digest, pp. 1361–1363 (2002)Google Scholar
  27. 27.
    Williams, D.F., Remley, K.A.: Analytic sampling-circuit model. IEEE Trans. Microw. Theory Tech. 49, 1013–1019 (June 2001)CrossRefGoogle Scholar
  28. 28.
    Remley, K.A.: Realistic sampling-circuit model for a nose-to-nose simulation. IEEE MTT-S International Microwave Symposium Digest, pp. 1473–1476 (2000)Google Scholar
  29. 29.
    Aikawa, M., Ogawa, H.: A new MIC magic-T using coupled slot lines. IEEE Trans. Microw. Theory Tech. MTT-28(6):523–528 (June 1980)CrossRefGoogle Scholar
  30. 30.
    Hamilton, S., Hall, R.: Shunt-mode harmonic generation using step recovery diodes. Microw. J. 69–78 (April 1967)Google Scholar
  31. 31.
    Moll, J.L., Hamilton, S.: Physical modeling of the step recovery diode for pulse and harmonic generation circuits. Proc. IEEE. 57(7):1250–1259 (July 1969)CrossRefGoogle Scholar
  32. 32.
    Goldman, S.: Computer aids design of impulse multipliers. Microwaves & RF, pp. 101–128 (October 1983)Google Scholar
  33. 33.
    Zhang, J., Räisänen, V.: Computer-aided design of step recovery diode frequency multipliers. IEEE Trans. Microw. Theory Tech. 44(12):2612–2616 (December 1996)CrossRefGoogle Scholar
  34. 34.
    Han, J., Nguyen, Cam.: A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing. IEEE Microw. Wireless Compon. Lett. 12(6):206–208 (June 2002)CrossRefGoogle Scholar
  35. 35.
    Advanced Design System.: Agilent Technologies, Inc., Santa Clara, CA, U.S.AGoogle Scholar
  36. 36.
    Nguyen, C.: Radio-Frequency Integrated-Circuit Engineering. Wiley, New York (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Texas A&M University Dept of Elec and Comp EngineeringCollege StationUSA
  2. 2.Radio Engineering CenterPine-Telecom Inc.Yuseong-gu, DaejeonKorea, Republic of (South Korea)

Personalised recommendations