Skip to main content

Abstract

Tomato (Solanum lycopersicum L.) is the second most consumed vegetable after potato and finds several direct and indirect uses in human diet, providing significant sources of vitamins A and C, essential minerals, phenolic antioxidants and several other nutrients. Important breeding objectives in tomato include increasing fruit yield, improving sensory and nutritional quality and adaptation to biotic and abiotic stresses. Cultivated species of tomato has relatively little genetic variability due to an inbreeding mating system as well as several population bottlenecks. Nonetheless, during the past more than 70 years, wild species have been utilised to introgress desirable characters in cultivated tomato and widen its genetic base. Consequently, tomato has become one of the crops which have been benefitted most from alien introgressions. Among wild species, S. chilense, S. peruvianum, S. habrochaites and S. pimpinellifolium have been observed to be the richest sources of desirable alien genes and have been extensively used in hybridisation programmes. While the earlier introgressions were achieved mainly through conventional backcrossing, of late, these have been aided by genomic tools. This chapter reviews such significant developments in tomato improvement through alien gene transfer and analyses their impacts on improving tomato productivity, nutritional quality and adaptation to different biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba JM, Montserrat M, Fernandez-Munoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47

    PubMed  Google Scholar 

  • Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat- stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484

    CAS  PubMed  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of tomato leaf curl virus resistance in tomato line Ty172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    PubMed  Google Scholar 

  • Anonymous (2013) Late blight effectively managed with resistant tomatoes on long island in 2012. http://extension.psu.edu/plants/vegetable-fruit/news/2013/late-blight-effectively-managed-with-resistant-tomatoes-on-long-island-in-2012

  • Astua-Monge G, Minsavage GV, Stall RE, Davis MJ, Bonas U, Jones JB (2000) Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol Plant Microbe Interact 13:911–21

    CAS  PubMed  Google Scholar 

  • Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLS for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176

    CAS  PubMed  Google Scholar 

  • Bai Y, van der Hulst R, Huang CC, Wei L, Stam P, Lindhout P (2004) Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic, single locus markers. Theor Appl Genet 109:1215–1223

    CAS  PubMed  Google Scholar 

  • Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant Microbe Interact 18:354–362

    CAS  PubMed  Google Scholar 

  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstadler A, Lotti C, de Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function. Mol Plant Microbe Interact 21:30–39

    CAS  PubMed  Google Scholar 

  • Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the tomato Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theor Appl Genet 88:691–700

    CAS  PubMed  Google Scholar 

  • Barbieri M, Acciarri N, Sabatini E, Sardo L, Accotto GP, Pecchioni N (2010) Introgression of resistance to two Mediterranean virus species causing tomato yellow leaf curl into a valuable traditional tomato variety. J Plant Pathol 92:485–493

    CAS  Google Scholar 

  • Boiteux LS, Giordano LB (1992) Screening Lycopersicon germplasm for resistance to a Brazilian isolate of tomato spotted wilt virus (TSWV). TGC Rep 42:13–14

    Google Scholar 

  • Bonde R, Murphy EF (1952) Resistance of certain tomato varieties and crosses to late blight. Maine Agric Expt Sta Bull 497:5–15

    Google Scholar 

  • Bornt CD, Zitter TA (2012) Combined resistance to late blight, early blight, and Septoria leaf spot, in elite tomato lines. CALS project January 2008–December 2012. http://impact.cals.cornell.edu/project/combined-resistance-late-blight-early-blight-and-septoria-leaf-spot-elite-tomato-lines

  • Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor Appl Genet 78:489–494

    CAS  PubMed  Google Scholar 

  • Bournival BL, Vallejos CE, Scott JW (1990) Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theor Appl Genet 79:641–645

    CAS  PubMed  Google Scholar 

  • Breto MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species: III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88:395–401

    CAS  PubMed  Google Scholar 

  • Brommonschenkel SH, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138

    CAS  PubMed  Google Scholar 

  • Brouwer DJ, St. Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub NILs. Theor Appl Genet 108:628–638

    CAS  PubMed  Google Scholar 

  • Brouwer DJ, Jones ES, St Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:1130–1138

    Google Scholar 

  • Buonaurio R, Stravato VM, Cappelli C (1996) Occurrence of Pseudomonas syringae pv. tomato race 1 in Italy on Pto gene-bearing tomato plants. J Phytopathol 144:437–440

    CAS  Google Scholar 

  • Çalıs Ö, Topkaya S (2011) Genetic analysis of resistance to early blight disease in tomato. Afr J Biotechnol 10:18071–18077

    Google Scholar 

  • Canady MA, Stevens MR, Barineau MS, Scott JW (2001) Tomato spotted wilt virus (TSWV) resistance in tomato derived from Lycopersicon chilense Dun. LA 1938. Euphytica 117:19–25

    Google Scholar 

  • Canady MA, Ji Y, Chetelat RT (2006) Homologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775–1788

    CAS  PubMed  Google Scholar 

  • Cassol T, St Clair DA (1994) Inheritance of resistance to black mold (Alternaria alternata (Fr) Keissler) in two interspecific crosses of tomato (Lycopersicon esculentum × L. cheesmanii f. typicum). Theor Appl Genet 88:581–588

    CAS  PubMed  Google Scholar 

  • Chaerani R, Smulders MJM, van der Linden CG, Vosman B, Stam P, Voorrips RE (2007) QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicoides × S. arcanum cross. Theor Appl Genet 114:439–450

    CAS  PubMed  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    CAS  Google Scholar 

  • Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Hort Sci Biotechnol 77:281–286

    CAS  Google Scholar 

  • Cirulli M, Alexander LJ (1966) A comparison of pathogenic isolates of Fusarium oxysporum f. sp. lycopersici and different sources of resistance in tomato. Phytopathology 56:1301–1304

    Google Scholar 

  • Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirusutum. Theor Appl Genet 108:1047–1304

    CAS  PubMed  Google Scholar 

  • Davis JD, Evan W, Gokirmak T, Chetelat RT, Stotz HU (2009) Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato. Theor Appl Genet 119:305–114

    PubMed Central  PubMed  Google Scholar 

  • de Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48

    Google Scholar 

  • Dickinson MJ, Jones DA, Jones JD (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347

    CAS  PubMed  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459

    CAS  PubMed  Google Scholar 

  • Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dropkin VH (1969a) Cellular responses of plants to nematode infections. Ann Rev Phytopathol 7:101–122

    CAS  Google Scholar 

  • Dropkin VH (1969b) The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59:1632–1637

    Google Scholar 

  • Ernst K, Kumar A, Kriseleit D, Kloosm DU, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136

    CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    CAS  PubMed  Google Scholar 

  • Faino L, Azizinia S, Hassanzadeh BH, Verzaux E, Ercolano RM, Visser GFR, Bai Y (2012) Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato. Euphytica 184:223–234

    Google Scholar 

  • Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P (2007a) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114:585–593

    PubMed  Google Scholar 

  • Finkers R, van Heusden AW, Meijer-Dekens F, van Kan JAL, Maris P, Lindhout P (2007b) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080

    PubMed Central  PubMed  Google Scholar 

  • Finkers R, Bai YL, van den Berg P, van Berloo R, Meijer-Dekens F, ten Have A, van Kan J, Lindhout P, van Heusden AW (2008) Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica 159:83–92

    Google Scholar 

  • Finlay KW (1953) Inheritance of spotted wilt resistance in tomato. II. Five genes controlling spotted wilt resistance in four tomato types. Aust J Biol Sci 6:153–163

    CAS  PubMed  Google Scholar 

  • Firdaus S, van Heusden AW, Hidayati N, Supena EDJ, Visser RGF, de Vos RCH, Vosman B (2013) Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 126:1487–1501

    CAS  PubMed  Google Scholar 

  • Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98:6511–6515

    PubMed  Google Scholar 

  • Foolad MR (1997) Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed 116:53–58

    CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Org 76:101–119

    CAS  Google Scholar 

  • Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an interspecific cross of tomato Lycopersicon esculentum × L. pennellii. Plant Cell Rep 17:306–312

    CAS  Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet 99:235–243

    CAS  Google Scholar 

  • Foolad MR, Lin GY (1997) Genetic potential for salt tolerance during germination in Lycopersicon species. Hort Sci 32:296–300

    Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt- tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    CAS  PubMed  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hort 695:225–240

    Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA (1997) Mapping QTLs conferring tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    CAS  Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    CAS  PubMed  Google Scholar 

  • Foolad MR, Subbiah P, Ghangas GS (2002a) Parent-offspring correlation estimate of heritability for early blight resistance in tomato, Lycopersion esculentum Mill. Euphytica 126:291–297

    Google Scholar 

  • Foolad MR, Zhang L, Khan A, Nino-Liu D, Lin GY (2002b) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104:945–958

    CAS  PubMed  Google Scholar 

  • Foolad MR, Zang LP, Subbiah P (2003) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545

    CAS  PubMed  Google Scholar 

  • Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107

    CAS  Google Scholar 

  • Frary A, Graham E, Jacobs J, Chetelat RT, Tanksley SD (1998) Identification of QTL for late blight resistance from L. pimpinellifolium L3708. Tomato Genet Coop Rep 48:19–21

    Google Scholar 

  • Frary A, Göl D, Keleş D, Pinar H, Gol D, Doganlar S (2011) NaCl tolerance in Lycopersicon pennellii introgression lines: QTL related to physiological responses. Biol Plantarum 55:461–468

    CAS  Google Scholar 

  • Frary A, Göl D, Keleş D, Ökmen B, Pınar H, Şığva HO, Yemenicioğlu A, Doğanlar S (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58

    Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie A, Zamir D (2004) Zooming-in on a quantitative trait for tomato yield using wild species introgression lines. Science 305:1786–1789

    CAS  PubMed  Google Scholar 

  • Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Hort Sci 123:1004–1007

    Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum L. parviflorum cross. Theor Appl Genet 100:1025–1042

    CAS  Google Scholar 

  • Gallegly ME, Marvel ME (1955) Inheritance of resistance to tomato race-O of Phytophthora infestans. Phytopathology 45:103–109

    Google Scholar 

  • Ganal MW, Simon R, Brommonschenkel S, Arndt M, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact 8:886–891

    CAS  PubMed  Google Scholar 

  • Gardner M (1920) Indiana plant diseases. Proc Ind Acad Sci 30–31:187–208

    Google Scholar 

  • Gardner RG (1988) NC EBR-1 and NC EBR-2 early blight resistant tomato breeding lines. Hort Sci 23:779–781

    Google Scholar 

  • Gardner RG, Panthee DR (2012) “Mountain Magic”: an early blight and late blight-resistant specialty type F1 hybrid tomato. Hort Sci 47(2):299–300

    Google Scholar 

  • Grandillo S, Zamir D, Tanksley SD (1999) Genetic improvement of processing tomatoes: a 20-year perspective. Euphytica 110:85–97

    Google Scholar 

  • Griffiths PD, Scott JW (2001) Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hort Sci 126:462–467

    CAS  Google Scholar 

  • Haanstra JPW (2000) Characterization of resistance genes to Cladosporium fulvum on the short arm of chromosome 1 of tomato. Wageningen Univ dissertation no. 2735. Wageningen, The Netherlands, p 119

    Google Scholar 

  • Haanstra JPW, Lauge R, Meijer-Dekens F, Bonnema G, De Wit PJGM, Lindhout P (1999) The Cf-ECP2 gene is linked to, but not part of the Cf-4/Cf-9 cluster on the short arm of chromosome 1 of tomato. Mol Gen Genet 262:839–845

    CAS  PubMed  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 15:15–20

    Google Scholar 

  • Hanson PM, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18

    Google Scholar 

  • Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409–418

    CAS  PubMed  Google Scholar 

  • Holtzmann OV (1965) Effects of soil temperature on resistance of tomato to root-knot nematode Meloidogyne incognita. Phytopathology 55:990–992

    Google Scholar 

  • Huang CC, Lindhout P (1997) Screening for resistance in wild Lycopersicon species to Fusarium oxysporum f. sp. Lycopersici race 1 and race 2. Euphytica 93:145–153

    Google Scholar 

  • Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000a) Development of diagonestic PCR markers closely linked to the tomato powdery mildew gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924

    CAS  Google Scholar 

  • Huang CC, van de Putte PM, Haanstra-van der Meer JG, Meijer-Dekens F, Lindhout P (2000b) Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6. Heredity 85:511–520

    CAS  PubMed  Google Scholar 

  • Ji Y, Scott JW (2005) identification of RAPD markers linked to Lycopersicon chilense derived begomovirus resistant gene on chromosome 6 of tomato. In: 1st International symposium on tomato diseases. Acta Hort 695:407–416

    CAS  Google Scholar 

  • Ji Y, Scott JW (2006) Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6 of tomato. Tomato Genet Coop Rep 56:22–25

    Google Scholar 

  • Ji YF, Scott JW, Hanson P, Graham E, Maxwell DP (2007a) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl disease. Springer, New York, pp 343–362

    Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Kluwer, Dordrecht, pp 343–362

    Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    CAS  Google Scholar 

  • Ji Y, Scott JW, Schuster DJ (2009b) Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Hort Sci 44:614–618

    Google Scholar 

  • Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant Microbe Interact 6:348–357

    CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    CAS  PubMed  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the Xanthomanas associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27:755–62

    CAS  PubMed  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H, Minsavage GE, Stall RE, Schaad NW (2005) Bacterial spot – worldwide distribution, importance and review. Acta Hort 695:27–33

    Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510

    CAS  PubMed  Google Scholar 

  • Kalloo G, Banerjee MK (1990) Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 105:156–159

    Google Scholar 

  • Kalloo G, Banerjee MK (1993) Early blight resistance in Lycopersicum esculentum Mill. Transferred from L. pimpinellifolium L. Mill. and L. hirsutum f. glabratum Mull. Gartenbauwissenschaft 8:238–239

    Google Scholar 

  • Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    CAS  PubMed  Google Scholar 

  • Kerr EA, Cook FI (1983) Ontario 7710 – a tomato breeding line with resistance to bacterial speck, Pseudomonas syringae pv tomato Okabe. Can J Plant Sci 63:1107–1109

    Google Scholar 

  • Kozik EU (2002) Studies on resistance to bacterial speck Pseudomonas syringae pv. tomato in tomato cv. Ontario 7710. Plant Breed 121:526–530

    Google Scholar 

  • Labate JA, Robertson LD (2012) Evidence of cryptic introgression in tomato Solanum lycopersicum L. based on wild tomato species alleles. BMC Plant Biol 12:133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    CAS  PubMed  Google Scholar 

  • Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2 resistance genes from tomato differ in four amino acids. J Exp Bot 56:2925–33

    CAS  PubMed  Google Scholar 

  • Langford AN (1937) The parasitism of Cladosporium fulvum Cooke and the genetics of resistance to it. Can J Res 15:108–128

    Google Scholar 

  • Laterrot H (1976) Localisation chromosomique de 12 chez la tomate controlant Ia resistance au pathotype 2 de Fusarium oxysporum f. lycopersici. Ann Amelior Plant 26:485–491

    Google Scholar 

  • Laterrot H (2000) Disease resistance in tomato: practical situation. Acta Physiol Plant 22:328–331

    Google Scholar 

  • Lauge R, Dmitriev AP, Joosten MHAJ, De Wit PJGM (1998) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant Microbe Interact 11:301–308

    CAS  Google Scholar 

  • Lauge R, Goodwin PH, De Wit PJGM, Joosten MHAJ (2000) Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant J 23:735–745

    CAS  PubMed  Google Scholar 

  • Leckie BM, DeJong DM, Mutschler MA (2012) Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol Breed 30:1621–1634

    CAS  Google Scholar 

  • Lévesque H, Vedel E, de Coureel AJL (1990) Identification of a short rDNA spacer sequence highly specific of a sequence highly specific of a tomato line containing Tm-1 gene introgressed from Lycopersicon hirsutum. Theor Appl Genet 80:602–608

    PubMed  Google Scholar 

  • Li C, Bonnema G, Che D, Dong L, Lindhout P, Visser RGF, Bai Y (2007) Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew. Mol Plant Microbe Interact 20:1161–1172

    CAS  PubMed  Google Scholar 

  • Li J, Liu L, Bai Y, Finkers R, Wang F, Du Yang YY, Xie B, Visser RGF, van Heusden AW (2011) Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica 179(3):427–438

    Google Scholar 

  • Lim GTT, Wang GP, Hemming MN, McGrath DJ, Jones DA (2008) High resolution genetic and physical mapping of the 1-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theor Appl Genet 118:57–75

    CAS  PubMed  Google Scholar 

  • Lindhout P, Van der Beek H, Pet G (1994) Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium lycopersicum): mapping of resistance gene Ol-1 on chromosome 6 of Lycopersicon hirsutum. Acta Hort 376:387–394

    CAS  Google Scholar 

  • Loh YT, Martin G (1995) The disease-resistance gene Pto and the fenthion-sensitivity gene Fen encode closely related functional protein kinases. Proc Natl Acad Sci USA 92:4181–4184

    CAS  PubMed  Google Scholar 

  • Maiero M, Ng TJ, Barksdale TH (1990) Genetic resistance to early blight in tomato breeding lines. Hort Sci 25:344–346

    Google Scholar 

  • Martin B, Nienhuis J, King G (1989) Restriction fragment length polymorphisms associated with water-use efficiency in tomato. Science 243:1725–1728

    CAS  PubMed  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    CAS  PubMed  Google Scholar 

  • Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    CAS  PubMed  Google Scholar 

  • McGrath DJ, Gillespie D, Vawdrey L (1987) Inheritance of resistance to Fusarium oxysporum f. sp. lycopersici races 2 and 3 in Lycopersicon pennellii. Aust J Agric Res 38:729–733

    Google Scholar 

  • Michelmore RW (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 15:393–427

    Google Scholar 

  • Michelson I, Zamir D, Czosnek H (1994) Accumulation and translocation of tomato yellow leaf curl leaf virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84(9):928–933

    CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root-knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Momotaz A, Scott JW, Schuster DJ (2010) Identification of quantitative trait loci conferring resistance to Bemisia tabaci in an F2 population of Solanum lycopersicum × S. habrochaites accession LA1777. J Am Soc Hort Sci 1352:134–142

    Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species. IV. High efficiency of marker-assisted selection to obtain salt-tolerant breeding lines. Theor Appl Genet 93:765–772

    CAS  PubMed  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997a) Salt tolerance in Lycopersicon species. VI. Genotype by salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713

    Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997b) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293

    CAS  Google Scholar 

  • Monforte AJ, Asins AJ, Carbonell EA (1999) Salt tolerance in Lycopersicon spp VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98:593–601

    Google Scholar 

  • Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophtora infestans in tomato. Mol Plant Microbe Interact 11:259–269

    CAS  Google Scholar 

  • Mutschler MA, Doerge RW, Liu J, Kuai JP, Liedl B, Shapiro Y (1996) QTL analysis of pest resistance in the wild tomato, Lycopersicon pennellii: QTL controlling acylsugar level and composition. Theor Appl Genet 92:709–718

    CAS  PubMed  Google Scholar 

  • Nash AF, Gardner RG (1988) Tomato early blight resistance in a breeding line derived from Lycopersicon hirsutum PI 126445. Plant Dis 72:206–209

    Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet 92:151–156

    CAS  PubMed  Google Scholar 

  • Paddock EF (1950) A tentative assignment of Fusarium-immunity locus to linkage group 5 in tomato. Genetics 35:683–684

    Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–99

    CAS  PubMed  Google Scholar 

  • Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BB, Jones JD (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at theCf-4/9 locus of tomato. Cell 91:821–832

    CAS  PubMed  Google Scholar 

  • Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0. Phytophthora infestans. Tomato Genet Coop Rep 21:30

    Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes Solanum section Lycopersicon: Solanaceae from Northern Peru. Syst Bot 302:424–434

    Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sections Lycopersicoides, Juglandifolia, Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186

    Google Scholar 

  • Pilowsky M, Cohen S (1974) Inheritance of resistance to tomato, yellow leaf curl virus in tomatoes. Phytopathology 64:632–635

    Google Scholar 

  • Pilowsky M, Cohen S (1990) Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis 74:248–250

    Google Scholar 

  • Pitblado RE, Kerr EA (1980) Resistance to bacterial speck (Pseudomonas syringae pv. tomato) in tomato. Acta Hort 100:379–382

    Google Scholar 

  • Pitblado RE, MacNeill BH (1983) Genetic basis of resistance to Pseudomas syringae pv. tomato in field tomatoes. Can J Plant Pathol 5:251–255

    Google Scholar 

  • Pitblado RE, MacNeill BH, Kerr EA (1984) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato. Can J Plant Pathol 6:48–53

    Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14(1):21–29

    CAS  PubMed  Google Scholar 

  • Porte WS, Walker HB (1941) The Pan American tomato, a new red variety highly resistant to Fusarium wilt. USDA Circ, Washington, DC, p 611

    Google Scholar 

  • Poysa V, Tu JC (1996) Response of cultivars and breeding lines of Lycopersicon spp. to Alternaria solani. Can Plant Dis Surv 76:5–8

    Google Scholar 

  • Price DL, Memmott JW, Scott JW, Olson S, Stevens MR (2007) Identification of molecular markers linked to a new Tomato spotted wilt virus resistance source in tomato. Tomato Genet Coop Rep 57:35

    Google Scholar 

  • Randhawa HS, Mutti JS, Kidwell K, Morris CF, Chen X, Gill KS (2009) Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS One 46:e5752

    Google Scholar 

  • Rick C (1958) M: the role of natural hybridization in the derivation of cultivated tomatoes of western South America. Econ Bot 12:346–367

    Google Scholar 

  • Rick CM (1987) Seedling traits of primary trisomics. Tomato Genet Coop Rep 37:60–61

    Google Scholar 

  • Rick CM (1988) Tomato-like nightshades: affinities, autoecology, and breeders opportunities. Econ Bot 42:145–154

    Google Scholar 

  • Rick CM (1990) New or otherwise noteworthy accessions of wild tomato species. Tomato Genet Coop Rep 40:30

    Google Scholar 

  • Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hort 412:21–38

    Google Scholar 

  • Rieseberg L, Baird S, Gardner K (2000) Hybridization, introgression, and linkage evolution. Plant Mol Biol 42:205–224

    CAS  PubMed  Google Scholar 

  • Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436

    CAS  PubMed  Google Scholar 

  • Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, St Clair DA (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    CAS  Google Scholar 

  • Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum var. esculentum) and wild relatives. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2, tomato. Science, New Hampshire, pp 25–75

    Google Scholar 

  • Rosello S, Diez MJ, Nuez F (1998) Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 5:499–509

    Google Scholar 

  • Rosello S, Ricarte B, Diez MJ, Nuez F (2001) Resistance to tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars. Euphytica 119:357–367

    CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    CAS  PubMed  Google Scholar 

  • Saidi M, Warade SD (2008) Tomato breeding for resistance to tomato spotted wilt virus TSWV: an overview of conventional and molecular approaches. Czech J Genet Plant Breed 44:83–92

    Google Scholar 

  • Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Ferna´ndez-Mun˜oz R, Lozano R, Capel J (2012) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92

    PubMed  Google Scholar 

  • Salmeron J, Oldroyd G, Rommens C, Scofield S, Kim HS, Lavelle D, Dahlbeck D, Staskawicz B (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    CAS  PubMed  Google Scholar 

  • Sandbrink JM, van Ooijen JW, Purimahua CC, Vrielink M, Verkerk R, Zabel P, Lindhout P (1995) Localization of genes for bacterial canker resistance in Lycopersicon eruvianum using RFLPs. Theor Appl Genet 90:444–450

    CAS  PubMed  Google Scholar 

  • Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26

    CAS  PubMed  Google Scholar 

  • Scott JW, Gardner RG (2007) Breeding for resistance to fungal pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2, Tomato. Science, New Hampshire, pp 421–456

    Google Scholar 

  • Scott JW, Jones JP (1989) Monogenic resistance in tomato to Fusarium oxysporum f. sp. lycopersici race 3. Euphytica 40:49–53

    Google Scholar 

  • Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. J Am Soc Hort Sci 129:394–400

    CAS  Google Scholar 

  • Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108:1635–1642

    CAS  PubMed  Google Scholar 

  • Sela-Buurlage MB, Budai-Hadrian O, Pan Q, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R (2001) Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Mol Genet Genomics 265:1104–1111

    CAS  PubMed  Google Scholar 

  • Shapiro J, Steffens J, Mutschler MA (1994) Acylsugars of the wild tomato (Lycopersicon pennellii) in relation to its geographic distribution. Biochem Syst Ecol 22:545–561

    CAS  Google Scholar 

  • Smart CD, Tanksley SD, Mayton H, Fry WE (2007) Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Dis 91:1045–1049

    Google Scholar 

  • Soumpourou E, Iakovidis M, Chartrain L, Lyall V, Thomas CM (2007) The Solanum pimpinellifolium Cf-ECP1 and Cf-ECP4 genes for resistance to Cladosporium fulvum are located at the Milky Way locus on the short arm of chromosome1. Theor Appl Genet 115:1127–1136

    CAS  PubMed  Google Scholar 

  • Stall RE, Walter JM (1965) Selection and inheritance of resistance in tomato to isolates of races 1 and 2 of the Fusarium wilt organism. Phytopathology 55:1213–1215

    Google Scholar 

  • Stevens MR, Scott SJ, Gergerich RC (1992) Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59:9–17

    Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    CAS  PubMed  Google Scholar 

  • Stevens MR, Scott JW, Cho JJ, Geary BD, Memmott FD (2006) A new dominantly inherited source of TSWV resistance in tomato derived from L. chilense, which resists isolates that overcome Sw-5. Hort Scie 41:991

    Google Scholar 

  • Stevens MR, Scott JW, Docter K, O’neil D, Price D (2009) Localization and mapping of SW-7 a tomato spotted wilt virus resistance gene. http://tgc.ifas.ufl.edu/2009/stevens%20SW7%20mapping.pdf

  • Tanksley SD, Costello W (1991) The size of the L. pennellii chromosome 7 segment containing the I-3 gene in tomato breeding lines as measured by RFLP probing. Tomato Genet Coop Rep 41:60–61

    Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, De Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint Kurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Truco MJ, Randall LB, Bloom AJ, St. Clair DA (2000) Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × Lycopersicon hirsutum. Theor Appl Genet 101:1082–1092

    CAS  Google Scholar 

  • Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an tomato (Lycopersicon esculentum). Theor Appl Genet 66:241–247

    CAS  PubMed  Google Scholar 

  • van der Beek JG, Verkerk R, Zabel P, Lindhout P (1992) Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 resistance to Cladosporium fulvum on chromosome 1. Theor Appl Genet 84:106–112

    PubMed  Google Scholar 

  • van der Beek JG, Pet G, Lindhout P (1994) Resistance to powdery mildew Oidium lycopersicum in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome6. Theor Appl Genet 89:467–473

    PubMed  Google Scholar 

  • van Heusden AW, Koornneef M, Voorrips RE, Bruggenmann W, Pet G, Vrielink-van-Ginke IR, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis subsp. michiganensis. Theor Appl Genet 99:1068–1074

    Google Scholar 

  • Veremis JC, Roberts PA (1996a) Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor Appl Genet 93:950–959

    CAS  PubMed  Google Scholar 

  • Veremis JC, Roberts PA (1996b) Differentiation of Meloidogyne incognita and M. arenaria novel resistance phenotypes in Lycopersicon peruvianum and derived bridge lines. Theor Appl Genet 93:960–967

    CAS  PubMed  Google Scholar 

  • Veremis JC, Roberts PA (1996c) Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex. Theor Appl Genet 93:894–901

    CAS  PubMed  Google Scholar 

  • Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280

    CAS  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    CAS  PubMed  Google Scholar 

  • Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to tomato yellow leaf curl virus from different wild tomato species. Plant Breed 1–7

    Google Scholar 

  • Villata I, Reina-Sanchez A, Bolarin MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880

    Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, De Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    CAS  PubMed  Google Scholar 

  • Watterson JC (1986) Diseases. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 35–109

    Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    CAS  PubMed  Google Scholar 

  • Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585

    CAS  PubMed  Google Scholar 

  • Yuan YN, Haanstra J, Lindhout P, Bonnema G (2002) The Cladopsorium fulvum resistance gene Cf-ECP3 is part of the Orion cluster on the short arm of chromosome 1. Mol Breed 10:45–50

    CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 212:983–989

    Google Scholar 

  • Zamir D (2008) Plant breeders go back to nature. Nat Genet 403:269–270

    Google Scholar 

  • Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content in Lycopersicon. Euphytica 36:187–191

    CAS  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti MY, Harel YEE, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    CAS  PubMed  Google Scholar 

  • Zhang LP, Lin GY, Nino-Liu D, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kalia, P., Palanisamy, M. (2014). Tomato. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9572-7_15

Download citation

Publish with us

Policies and ethics