Advertisement

Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

  • Abbas Jafari
  • Linda Harkness
  • Walid Zaher
  • Moustapha KassemEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC are under intensive investigation worldwide. Several challenges with regard to the proper source of clinical-grade MSC and the efficacy of MSC-based treatment strategies need to be addressed before MSC can be routinely used in the clinic. Here, we discuss three areas that can potentially facilitate the translation of MSC into clinic: Generation of MSC-like cells from human pluripotent stem cells, strategies to enhance homing of MSC to injured tissues, and targeting of MSC in vivo.

Keywords

Mesenchymal stem cells MSC-like cells Pluripotent stem cells Homing In vivo targeting 

Abbreviations

AMD

Age-related macular degeneration

AMI

Acute myocardial infarction

Bzb

Bortezomib

CCR1

C-C Chemokine receptor type 1

CXCR4

C-X-C Chemokine receptor type 4

EB

Embryoid body

FAK

Focal adhesion kinase

GMP

Good manufacturing practice

hESC

Human embryonic stem cells

HLA

Human leukocyte antigen

hPSC

Human pluripotent stem cells

ICM

Inner cell mass

iPSC

Induced pluripotent stem cells

MHC

Major histocompatibility complex

miRNA

MicroRNA

MSC

Mesenchymal stem cells

Runx2

Runt-related transcription factor 2

SCID

Severe combined immunodeficiency

SDF-1α

Stromal cell-derived factor-1

siRNA

Small-interfering RNA

References

  1. 1.
    Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272PubMedGoogle Scholar
  2. 2.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650PubMedGoogle Scholar
  3. 3.
    Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19(1):35–42PubMedPubMedCentralGoogle Scholar
  4. 4.
    Garcia-Gomez I, Elvira G, Zapata AG, Lamana ML, Ramirez M, Castro JG et al (2010) Mesenchymal stem cells: biological properties and clinical applications. Expert Opin Biol Ther 10(10):1453–1468PubMedGoogle Scholar
  5. 5.
    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319PubMedCentralPubMedGoogle Scholar
  6. 6.
    Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Mortha E et al (2012) Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci 1266:94–106PubMedGoogle Scholar
  7. 7.
    Akiyama K, Chen C, Gronthos S, Shi S (2012) Lineage differentiation of mesenchymal stem cells from dental pulp, apical papilla, and periodontal ligament. Methods Mol Biol 887:111–121PubMedGoogle Scholar
  8. 8.
    Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68(4–5):245–253PubMedGoogle Scholar
  9. 9.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942PubMedGoogle Scholar
  10. 10.
    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155PubMedGoogle Scholar
  11. 11.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192PubMedGoogle Scholar
  12. 12.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedGoogle Scholar
  13. 13.
    Kermani AJ, Fathi F, Mowla SJ (2008) Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Res 11(2):379–386PubMedGoogle Scholar
  14. 14.
    Al-Nbaheen M, Vishnubalaji R, Ali D, Bouslimi A, Al-Jassir F, Megges M et al (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 9(1):32–43PubMedCentralPubMedGoogle Scholar
  15. 15.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedGoogle Scholar
  16. 16.
    Aldahmash A, Zaher W, Al-Nbaheen M, Kassem M (2012) Human stromal (mesenchymal) stem cells: basic biology and current clinical use for tissue regeneration. Ann Saudi Med 32(1):68–77PubMedGoogle Scholar
  17. 17.
    Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926PubMedGoogle Scholar
  18. 18.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedGoogle Scholar
  19. 19.
    Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204PubMedGoogle Scholar
  20. 20.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedGoogle Scholar
  21. 21.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324PubMedGoogle Scholar
  22. 22.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedGoogle Scholar
  23. 23.
    Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123PubMedGoogle Scholar
  24. 24.
    Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146PubMedGoogle Scholar
  25. 25.
    Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461(7260):86–90PubMedGoogle Scholar
  26. 26.
    Mahmood A, Harkness L, Abdallah BM, Elsafadi M, Al-Nbaheen MS, Aldahmash A et al (2012) Derivation of stromal (skeletal and mesenchymal) stem-like cells from human embryonic stem cells. Stem Cells Dev 21(17):3114–3124PubMedCentralPubMedGoogle Scholar
  27. 27.
    Inanc B, Elcin AE, Elcin YM (2007) Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs 31(11):792–800PubMedGoogle Scholar
  28. 28.
    Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M (2011) Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone 48(2):231–241PubMedGoogle Scholar
  29. 29.
    Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT (2012) One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225PubMedCentralPubMedGoogle Scholar
  30. 30.
    ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R (2008) Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3(5):508–518PubMedCentralPubMedGoogle Scholar
  31. 31.
    Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106(5):1601–1603PubMedGoogle Scholar
  32. 32.
    Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17(6):1227–1242PubMedGoogle Scholar
  33. 33.
    Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18(11):831–851PubMedGoogle Scholar
  34. 34.
    Son MY, Kim HJ, Kim MJ, Cho YS (2011) Physical passaging of embryoid bodies generated from human pluripotent stem cells. PLoS One 6(5):e19134PubMedCentralPubMedGoogle Scholar
  35. 35.
    Wu R, Gu B, Zhao X, Tan Z, Chen L, Zhu J et al (2013) Derivation of multipotent nestin+/CD271-/STRO-1- mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions. Hum Cell 26(1):19–27PubMedGoogle Scholar
  36. 36.
    Arpornmaeklong P, Brown SE, Wang Z, Krebsbach PH (2009) Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev 18(7):955–968PubMedCentralPubMedGoogle Scholar
  37. 37.
    Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS et al (2009) Human embryonic stem cell-derived mesenchymal progenitors – potential in regenerative medicine. Stem Cell Res 3(1):39–50PubMedGoogle Scholar
  38. 38.
    Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM et al (2007) Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 25(2):425–436PubMedGoogle Scholar
  39. 39.
    Aravamudhan A, Ramos DM, Nip J, Subramanian A, James R, Harmon MD et al (2013) Osteoinductive small molecules: growth factor alternatives for bone tissue engineering. Curr Pharm Des 19(19):3420–3428PubMedGoogle Scholar
  40. 40.
    Olivier EN, Rybicki AC, Bouhassira EE (2006) Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24(8):1914–1922PubMedGoogle Scholar
  41. 41.
    Olivier E, Bouhassira E (2011) Differentiation of human embryonic stem cells into mesenchymal stem cells by the raclure method. In: Nieden NI (ed) Embryonic stem cell therapy for osteo-degenerative diseases. Humana, New York, pp 183–193Google Scholar
  42. 42.
    Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359PubMedCentralPubMedGoogle Scholar
  43. 43.
    Mahmood A, Harkness L, Schroder HD, Abdallah BM, Kassem M (2010) Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGFb/activin/nodal signaling using SB-431542. J Bone Miner Res 25(6):1216–1233PubMedGoogle Scholar
  44. 44.
    Tremoleda JL, Forsyth NR, Khan NS, Wojtacha D, Christodoulou I, Tye BJ et al (2008) Bone tissue formation from human embryonic stem cells in vivo. Cloning Stem Cells 10(1):119–132PubMedGoogle Scholar
  45. 45.
    Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1(5):490–494Google Scholar
  46. 46.
    Sidhu KS, Walke S, Tuch, BE (2008) Derivation and Propagation of hESC Under a Therapeutic Environment. Current Protocols in Stem Cell Biology 6:1A.4.1–1A.4.31Google Scholar
  47. 47.
    Skottman H, Dilber MS, Hovatta O (2006) The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett 580(12):2875–2878PubMedGoogle Scholar
  48. 48.
    Unger C, Skottman H, Blomberg P, Sirac Dilber M, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17(R1):R48–R53PubMedGoogle Scholar
  49. 49.
    Ohmine S, Dietz A, Deeds M, Hartjes K, Miller D, Thatava T et al (2011) Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells. Stem Cell Res Ther 2(6):46PubMedCentralPubMedGoogle Scholar
  50. 50.
    Han G, Jing Y, Zhang Y, Yue Z, Hu X, Wang L et al (2010) Osteogenic differentiation of bone marrow mesenchymal stem cells by adenovirus-mediated expression of leptin. Regul Pept 163(1–3):107–112PubMedGoogle Scholar
  51. 51.
    Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54PubMedGoogle Scholar
  52. 52.
    Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37(10):1099–1103PubMedGoogle Scholar
  53. 53.
    Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL et al (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23(1):19–20PubMedGoogle Scholar
  54. 54.
    Pera MF (2004) Unnatural selection of cultured human ES cells? Nat Biotechnol 22(1):42–43PubMedGoogle Scholar
  55. 55.
    Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y et al (2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26(12):1361–1363PubMedGoogle Scholar
  56. 56.
    Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167(4):723–734PubMedCentralPubMedGoogle Scholar
  57. 57.
    Schriebl K, Satianegara G, Hwang A, Tan HL, Fong WJ, Yang HH et al (2012) Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 18(9–10):899–909PubMedGoogle Scholar
  58. 58.
    Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29(9):829–834PubMedCentralPubMedGoogle Scholar
  59. 59.
    Wang YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM et al (2011) Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 21(11):1551–1563PubMedCentralPubMedGoogle Scholar
  60. 60.
    Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111(4):769–781PubMedGoogle Scholar
  61. 61.
    Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056PubMedCentralPubMedGoogle Scholar
  62. 62.
    Drukker M (2008) Immunological considerations for cell therapy using human embryonic stem cell derivatives. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute. Available from: http://www.ncbi.nlm.nih.gov/books/NBK27031/
  63. 63.
    Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S et al (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104PubMedGoogle Scholar
  64. 64.
    Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025PubMedGoogle Scholar
  65. 65.
    Isomoto S, Hattori K, Ohgushi H, Nakajima H, Tanaka Y, Takakura Y (2007) Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. J Orthop Sci 12(1):83–88PubMedGoogle Scholar
  66. 66.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953PubMedGoogle Scholar
  67. 67.
    Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R et al (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6(11):805–808PubMedCentralPubMedGoogle Scholar
  68. 68.
    Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388PubMedCentralPubMedGoogle Scholar
  69. 69.
    Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461PubMedCentralPubMedGoogle Scholar
  70. 70.
    Magnon C, Frenette PS (2008) Hematopoietic stem cell trafficking. StemBook. Cambridge, MAGoogle Scholar
  71. 71.
    Grauss RW, Winter EM, van Tuyn J, Pijnappels DA, Steijn RV, Hogers B et al (2007) Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol Heart Circ Physiol 293(4):H2438–H2447PubMedGoogle Scholar
  72. 72.
    Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J et al (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5(12):1028–1038PubMedGoogle Scholar
  73. 73.
    Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65(5):859–873PubMedGoogle Scholar
  74. 74.
    Pignolo RJ, Kassem M (2011) Circulating osteogenic cells: implications for injury, repair, and regeneration. J Bone Miner Res 26(8):1685–1693PubMedGoogle Scholar
  75. 75.
    Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8(1):243–250PubMedGoogle Scholar
  76. 76.
    Bentzon JF, Stenderup K, Hansen FD, Schroder HD, Abdallah BM, Jensen TG et al (2005) Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 330(3):633–640PubMedGoogle Scholar
  77. 77.
    Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z et al (2011) Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol 39(6):686–696PubMedGoogle Scholar
  78. 78.
    Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20(6):1232–1239PubMedGoogle Scholar
  79. 79.
    Lien CY, Chih-Yuan HK, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24(5):837–848PubMedGoogle Scholar
  80. 80.
    Frenette PS, Subbarao S, Mazo IB, von Andrian UH, Wagner DD (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci U S A 95(24):14423–14428PubMedCentralPubMedGoogle Scholar
  81. 81.
    Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML et al (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24(4):928–935PubMedGoogle Scholar
  82. 82.
    Sackstein R (2012) Glycoengineering of HCELL, the human bone marrow homing receptor: sweetly programming cell migration. Ann Biomed Eng 40(4):766–776PubMedCentralPubMedGoogle Scholar
  83. 83.
    Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP et al (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14(2):181–187PubMedGoogle Scholar
  84. 84.
    Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J et al (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18(3):456–462PubMedCentralPubMedGoogle Scholar
  85. 85.
    Sarkar D, Vemula PK, Teo GS, Spelke D, Karnik R, Wee lY et al (2008) Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug Chem 19(11):2105–2109PubMedGoogle Scholar
  86. 86.
    Sarkar D, Zhao W, Gupta A, Loh WL, Karnik R, Karp JM (2011) Cell surface engineering of mesenchymal stem cells. Methods Mol Biol 698:505–523PubMedGoogle Scholar
  87. 87.
    Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y et al (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16(3):571–579PubMedGoogle Scholar
  88. 88.
    Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645PubMedGoogle Scholar
  89. 89.
    Song C, Li G (2011) CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors. Cytotherapy 13(5):549–561PubMedGoogle Scholar
  90. 90.
    Zhang D, Fan GC, Zhou X, Zhao T, Pasha Z, Xu M et al (2008) Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol 44(2):281–292PubMedCentralPubMedGoogle Scholar
  91. 91.
    Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ (2010) Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther 21(11):1513–1526PubMedCentralPubMedGoogle Scholar
  92. 92.
    Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762PubMedCentralPubMedGoogle Scholar
  93. 93.
    Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10(2):191–197PubMedGoogle Scholar
  94. 94.
    Sachsenmaier C (2001) Targeting protein kinases for tumor therapy. Onkologie 24(4):346–355PubMedGoogle Scholar
  95. 95.
    Via MC (2011) Kinase-targeted therapeutics: development pipelines, challenges, and opportunities, August. http://www.insightpharmareports.com/Kinase-Targeted-Therapeutics-Report.aspx
  96. 96.
    Field-Smith A, Morgan GJ, Davies FE (2006) Bortezomib (Velcadetrade mark) in the treatment of multiple myeloma. Ther Clin Risk Manag 2(3):271–279PubMedCentralPubMedGoogle Scholar
  97. 97.
    Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J et al (1997) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16(3):307–310PubMedGoogle Scholar
  98. 98.
    Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN et al (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118(2):491–504PubMedCentralPubMedGoogle Scholar
  99. 99.
    Andersen MO, Nygaard JV, Burns JS, Raarup MK, Nyengaard JR, Bunger C et al (2010) siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Ther 18(11):2018–2027PubMedCentralPubMedGoogle Scholar
  100. 100.
    Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6(9):1130–1146PubMedCentralPubMedGoogle Scholar
  101. 101.
    Takayama K, Suzuki A, Manaka T, Taguchi S, Hashimoto Y, Imai Y et al (2009) RNA interference for noggin enhances the biological activity of bone morphogenetic proteins in vivo and in vitro. J Bone Miner Metab 27(4):402–411PubMedGoogle Scholar
  102. 102.
    Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L et al (2012) A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med 18(2):307–314PubMedGoogle Scholar
  103. 103.
    Taipaleenmaki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M (2012) Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166(3):359–371PubMedGoogle Scholar
  104. 104.
    Lares MR, Rossi JJ, Ouellet DL (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28(11):570–579PubMedCentralPubMedGoogle Scholar
  105. 105.
    Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY et al (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108(15):6139–6144PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Abbas Jafari
    • 1
    • 2
  • Linda Harkness
    • 1
  • Walid Zaher
    • 1
    • 3
  • Moustapha Kassem
    • 1
    • 2
    Email author
  1. 1.Endocrine Research Laboratory (KMEB), Department of Endocrinology and MetabolismOdense University Hospital & University of Southern DenmarkOdenseDenmark
  2. 2.Danish Stem Cell Center (DanStem), Institute of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
  3. 3.Stem Cell Unit, Department of Anatomy, College of MedicineKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations