Skip to main content

Adult Lung Stem Cells

  • Chapter
  • First Online:
Adult Stem Cells

Abstract

Over the past decade a wealth of information has been divulged on stem cells present in the lung both in the pulmonary vasculature and the respiratory tract. Cells have been identified with the capability of repopulating the lung and others that contribute to the pathogenesis or, conversely, have therapeutic benefit in pulmonary vascular disease. The isolation of a single-resident lung stem cell capable of repopulating any lung epithelium still remains elusive. What is currently known about stem and progenitor cells in the lung suggests that a non-classical stem cell hierarchy exists with a novel array of cellular mechanisms controlling proliferation and differentiation of such cells. This chapter serves to provide an up-to-date review of what is currently known about stem and progenitor cells within the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT2B :

5-hydroxytryptamine receptor 2B

ATI/ATII:

Alveolar type I and type II cells

BADJ:

Bronchoalveolar duct junction

BASC:

Bronchiolar stem cell

BMP:

Bone morphogenic protein

CCSP:

Clara cell secretory protein (also CC10)

CGRP:

Calcitonin gene-related peptide

COPD:

Chronic obstructive pulmonary disease

CTEPH:

Chronic thromboembolic pulmonary hypertension

CXCR4:

c-x-c chemokine receptor 4

EGF/EGFR:

Epidermal growth factor/epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

EndMT:

Endothelial mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

EPC:

Endothelial progenitor cell

FGF:

Fibroblast growth factor

FOXA2:

Forkhead box protein A2

FOXJ1:

Forkhead box protein J1

HSC:

Hematopoietic stem cell

IL-13:

Interleukin 13

IPF:

Idiopathic pulmonary fibrosis

Krt:

Cytokeratin

LDL:

Acetylated low density lipoprotein

MSC/MPC:

Mesenchymal stem/progenitor cell

NEB:

Neuroepithelial body

OVA:

Ovalbumin

PH:

Pulmonary hypertension

PNE/PNEB:

Pulmonary neuroendocrine cells/bodies

PO2 :

Partial pressure of oxygen

RA:

Retinoic acid

SCGB1A1:

Secretoglobin, family 1A, member 1 (uteroglobin)

SDF-1:

Stromal-derived factor 1

Shh:

Sonic hedgehog

SOX2:

SRY (sex-determining region Y)-box 2

SPA/B/C/D:

Surfactant protein A/B/C/D

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

TTF-1:

Thyroid transcription factor 1

VEGFR2:

Vascular endothelial growth factor receptor 2

References

  1. Stripp BR (2008) Hierarchical organization of lung progenitor cells: is there an adult lung tissue stem cell? Proc Am Thorac Soc 5:695–698

    PubMed Central  PubMed  Google Scholar 

  2. Plopper CG, Hyde DM (2008) The non-human primate as a model for studying COPD and asthma. Pulm Pharmacol Ther 21:755–766

    PubMed  CAS  Google Scholar 

  3. Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, DeMayo FJ, Burns AR, Smith C, Reynolds SD et al (2004) Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol 31:382–394

    PubMed  CAS  Google Scholar 

  4. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL (2006) Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74:422–437

    PubMed  CAS  Google Scholar 

  5. Que J, Luo X, Schwartz RJ, Hogan BL (2009) Multiple roles for Sox2 in the developing and adult mouse trachea. Development 136:1899–1907

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G, Hogan BL (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124:53–63

    PubMed  CAS  Google Scholar 

  7. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    PubMed  CAS  Google Scholar 

  8. Weaver M, Dunn NR, Hogan BL (2000) Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127:2695–2704

    PubMed  CAS  Google Scholar 

  9. Whitsett JA, Clark JC, Picard L, Tichelaar JW, Wert SE, Itoh N, Perl AK, Stahlman MT (2002) Fibroblast growth factor 18 influences proximal programming during lung morphogenesis. J Biol Chem 277:22743–22749

    PubMed  CAS  Google Scholar 

  10. Maeda Y, Dave V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244

    PubMed  CAS  Google Scholar 

  11. Jacobs IJ, Ku WY, Que J (2012) Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev Biol 369:54–64

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Gomperts BN, Belperio JA, Fishbein MC, Keane MP, Burdick MD, Strieter RM (2007) Keratinocyte growth factor improves repair in the injured tracheal epithelium. Am J Respir Cell Mol Biol 37:48–56

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BL (2009) The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4:525–534

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Plopper CG, Nishio SJ, Alley JL, Kass P, Hyde DM (1992) The role of the nonciliated bronchiolar epithelial (Clara) cell as the progenitor cell during bronchiolar epithelial differentiation in the perinatal rabbit lung. Am J Respir Cell Mol Biol 7:606–613

    PubMed  CAS  Google Scholar 

  16. Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, Suzuki S, Yamada M, Kondo T, Kato H et al (2011) Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest 91:363–378

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Hollande E, Cantet S, Ratovo G, Daste G, Bremont F, Fanjul M (2004) Growth of putative progenitors of type II pneumocytes in culture of human cystic fibrosis alveoli. Biol Cell 96:429–441

    PubMed  CAS  Google Scholar 

  18. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681

    PubMed  CAS  Google Scholar 

  19. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Kim CF (2007) Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol 293:L1092–L1098

    PubMed  CAS  Google Scholar 

  21. Firth AL, Yuan JX (2012) Identification of functional progenitor cells in the pulmonary vasculature. Pulm Circ 2:84–100

    PubMed Central  PubMed  Google Scholar 

  22. Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, Hotchkiss JA, Zhang Y, Novikov A, Dolganov G et al (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163:517–523

    PubMed  CAS  Google Scholar 

  23. Maestrelli P, Saetta M, Mapp CE, Fabbri LM (2001) Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:S76–S80

    PubMed  CAS  Google Scholar 

  24. Hayashi T, Ishii A, Nakai S, Hasegawa K (2004) Ultrastructure of goblet-cell metaplasia from Clara cell in the allergic asthmatic airway inflammation in a mouse model of asthma in vivo. Virchows Arch 444:66–73

    PubMed  Google Scholar 

  25. Reader JR, Tepper JS, Schelegle ES, Aldrich MC, Putney LF, Pfeiffer JW, Hyde DM (2003) Pathogenesis of mucous cell metaplasia in a murine asthma model. Am J Pathol 162:2069–2078

    PubMed Central  PubMed  Google Scholar 

  26. Kim S, Shim JJ, Burgel PR, Ueki IF, Dao-Pick T, Tam DC, Nadel JA (2002) IL-13-induced Clara cell secretory protein expression in airway epithelium: role of EGFR signaling pathway. Am J Physiol Lung Cell Mol Physiol 283:L67–L75

    PubMed  CAS  Google Scholar 

  27. Van Winkle LS, Isaac JM, Plopper CG (1997) Distribution of epidermal growth factor receptor and ligands during bronchiolar epithelial repair from naphthalene-induced Clara cell injury in the mouse. Am J Pathol 151:443–459

    PubMed Central  PubMed  Google Scholar 

  28. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA (1999) Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A 96:3081–3086

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Turner J, Roger J, Fitau J, Combe D, Giddings J, Heeke GV, Jones CE (2011) Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am J Respir Cell Mol Biol 44:276–284

    PubMed  CAS  Google Scholar 

  30. Inayama Y, Hook GE, Brody AR, Cameron GS, Jetten AM, Gilmore LB, Gray T, Nettesheim P (1988) The differentiation potential of tracheal basal cells. Lab Invest 58:706–717

    PubMed  CAS  Google Scholar 

  31. Brody JS, Joyce-Brady M, Paine R (1987) Lung cell differentiation. Mead Johnson Symp Perinat Dev Med (30):39–42

    Google Scholar 

  32. Moller PC, Partridge LR, Cox RA, Pellegrini V, Ritchie DG (1989) The development of ciliated and mucus cells from basal cells in hamster tracheal epithelial cell cultures. Tissue Cell 21:195–198

    PubMed  CAS  Google Scholar 

  33. Johnson NF, Hubbs AF (1990) Epithelial progenitor cells in the rat trachea. Am J Respir Cell Mol Biol 3:579–585

    PubMed  CAS  Google Scholar 

  34. Boers JE, Ambergen AW, Thunnissen FB (1998) Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am J Respir Crit Care Med 157:2000–2006

    PubMed  CAS  Google Scholar 

  35. Evans MJ, Shami SG, Cabral-Anderson LJ, Dekker NP (1986) Role of nonciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. Am J Pathol 123:126–133

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Nettesheim P, Jetten AM, Inayama Y, Brody AR, George MA, Gilmore LB, Gray T, Hook GE (1990) Pathways of differentiation of airway epithelial cells. Environ Health Perspect 85:317–329

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Zepeda ML, Chinoy MR, Wilson JM (1995) Characterization of stem cells in human airway capable of reconstituting a fully differentiated bronchial epithelium. Somat Cell Mol Genet 21:61–73

    PubMed  CAS  Google Scholar 

  38. Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C (2007) Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells 25:139–148

    PubMed  CAS  Google Scholar 

  39. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164:577–588

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106:12771–12775

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP (2011) Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121:4409–4419

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    PubMed  CAS  Google Scholar 

  44. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161:173–182

    PubMed Central  PubMed  Google Scholar 

  45. Yang YS, Yang MC, Weissler JC (2011) Pleiomorphic adenoma gene-like 2 expression is associated with the development of lung adenocarcinoma and emphysema. Lung Cancer 74:12–24

    PubMed Central  PubMed  Google Scholar 

  46. Xu X, Rock JR, Lu Y, Futtner C, Schwab B, Guinney J, Hogan BL, Onaitis MW (2012) Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc Natl Acad Sci U S A 109:4910–4915

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Cuzic S, Bosnar M, Kramaric MD, Ferencic Z, Markovic D, Glojnaric I, Erakovic Haber V (2012) Claudin-3 and Clara cell 10 kDa protein as early signals of cigarette smoke-induced epithelial injury along alveolar ducts. Toxicol Pathol 40:1169–1187

    PubMed  Google Scholar 

  48. Qian S, Ding JY, Xie R, An JH, Ao XJ, Zhao ZG, Sun JG, Duan YZ, Chen ZT, Zhu B (2008) MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem Biophys Res Commun 377:668–673

    PubMed  CAS  Google Scholar 

  49. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    PubMed  CAS  Google Scholar 

  50. de Visser KE, Ciampricotti M, Michalak EM, Tan DW, Speksnijder EN, Hau CS, Clevers H, Barker N, Jonkers J (2012) Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 228:300–309

    PubMed  Google Scholar 

  51. Oeztuerk-Winder F, Guinot A, Ochalek A, Ventura JJ (2012) Regulation of human lung alveolar multipotent cells by a novel p38alpha MAPK/miR-17-92 axis. EMBO J 31:3431–3441

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Ward HE, Nicholas TE (1984) Alveolar type I and type II cells. Aust N Z J Med 14:731–734

    PubMed  CAS  Google Scholar 

  53. Harris JB, Chang LY, Crapo JD (1991) Rat lung alveolar type I epithelial cell injury and response to hyperoxia. Am J Respir Cell Mol Biol 4:115–125

    PubMed  CAS  Google Scholar 

  54. Miller BE, Hook GE (1990) Hypertrophy and hyperplasia of alveolar type II cells in response to silica and other pulmonary toxicants. Environ Health Perspect 85:15–23

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Adamson IY, Bowden DH (1975) Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Lab Invest 32:736–745

    PubMed  CAS  Google Scholar 

  56. Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1975) Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22:142–150

    PubMed  CAS  Google Scholar 

  57. Kinnard WV, Tuder R, Papst P, Fisher JH (1994) Regulation of alveolar type II cell differentiation and proliferation in adult rat lung explants. Am J Respir Cell Mol Biol 11:416–425

    PubMed  CAS  Google Scholar 

  58. Dobbs LG, Geppert EF, Williams MC, Greenleaf RD, Mason RJ (1980) Metabolic properties and ultrastructure of alveolar type II cells isolated with elastase. Biochim Biophys Acta 618:510–523

    PubMed  CAS  Google Scholar 

  59. Joyce-Brady MF, Brody JS (1990) Ontogeny of pulmonary alveolar epithelial markers of differentiation. Dev Biol 137:331–348

    PubMed  CAS  Google Scholar 

  60. Uhal BD (1997) Cell cycle kinetics in the alveolar epithelium. Am J Physiol 272:L1031–L1045

    PubMed  CAS  Google Scholar 

  61. Gonzalez RF, Allen L, Dobbs LG (2009) Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro. Am J Physiol Lung Cell Mol Physiol 297:L1045–L1055

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Liu Y, Sadikot RT, Adami GR, Kalinichenko VV, Pendyala S, Natarajan V, Zhao YY, Malik AB (2011) FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J Exp Med 208:1473–1484

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Khatri M, Goyal SM, Saif YM (2012) Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication. J Virol 86:6427–6433

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Liu AR, Liu L, Chen S, Yang Y, Zhao HJ, Guo FM, Lu XM, Qiu HB (2013) Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 228(6):1270–1283

    PubMed  CAS  Google Scholar 

  65. Gotts JE, Matthay MA (2011) Mesenchymal stem cells and acute lung injury. Crit Care Clin 27:719–733

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Sun J, Han ZB, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC (2011) Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4+CD25+ Forkhead Boxp3 (FOXP3)+ regulatory T cells and balancing anti- and pro-inflammatory factors. Cell Physiol Biochem 27:587–596

    PubMed  CAS  Google Scholar 

  67. Xue J, Li X, Lu Y, Gan L, Zhou L, Wang Y, Lan J, Liu S, Sun L, Jia L et al (2013) Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther 21(2):456–465

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Zhang X, Wang H, Shi Y, Peng W, Zhang S, Zhang W, Xu J, Mei Y, Feng Z (2012) Role of bone marrow-derived mesenchymal stem cells in the prevention of hyperoxia-induced lung injury in newborn mice. Cell Biol Int 36:589–594

    PubMed  CAS  Google Scholar 

  69. Matthay MA, Goolaerts A, Howard JP, Lee JW (2010) Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med 38:S569–S573

    PubMed Central  PubMed  Google Scholar 

  70. Matthay MA, Thompson BT, Read EJ, McKenna DH Jr, Liu KD, Calfee CS, Lee JW (2010) Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138:965–972

    PubMed Central  PubMed  Google Scholar 

  71. van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131–1142

    PubMed Central  PubMed  Google Scholar 

  72. Zhang H, Fang J, Su H, Yang M, Lai W, Mai Y, Wu Y (2012) Bone marrow mesenchymal stem cells attenuate lung inflammation of hyperoxic newborn rats. Pediatr Transplant 16:589–598

    PubMed  CAS  Google Scholar 

  73. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180:1122–1130

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S (2008) Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26:2332–2338

    PubMed Central  PubMed  CAS  Google Scholar 

  75. TenHave-Opbroek AA, Hammond WG, Benfield JR, Teplitz RL, Dijkman JH (1993) Expression of alveolar type II cell markers in acinar adenocarcinomas and adenoid cystic carcinomas arising from segmental bronchi. A study in a heterotopic bronchogenic carcinoma model in dogs. Am J Pathol 142:1251–1264

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Lin C, Song H, Huang C, Yao E, Gacayan R, Xu SM, Chuang PT (2012) Alveolar type II cells possess the capability of initiating lung tumor development. PLoS One 7:e53817

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Ten Have-Opbroek AA, Benfield JR, van Krieken JH, Dijkman JH (1997) The alveolar type II cell is a pluripotential stem cell in the genesis of human adenocarcinomas and squamous cell carcinomas. Histol Histopathol 12:319–336

    PubMed  Google Scholar 

  78. Garcia CK (2011) Idiopathic pulmonary fibrosis: update on genetic discoveries. Proc Am Thorac Soc 8:158–162

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Banerjee ER, Henderson WR Jr (2012) Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther 3:21

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Vaughan AE, Chapman HA (2013) Regenerative activity of the lung after epithelial injury. Biochim Biophys Acta 1832(7):922–930

    PubMed  CAS  Google Scholar 

  81. Yeager ME, Frid MG, Stenmark KR (2011) Progenitor cells in pulmonary vascular remodeling. Pulm Circ 1:3–16

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Gomez-Gaviro MV, Lovell-Badge R, Fernandez-Aviles F, Lara-Pezzi E (2012) The vascular stem cell niche. J Cardiovasc Transl Res 5:618–630

    PubMed  Google Scholar 

  83. Masuda H, Kalka C, Asahara T (2000) Endothelial progenitor cells for regeneration. Hum Cell 13:153–160

    PubMed  CAS  Google Scholar 

  84. Nuzzolo ER, Iachininoto MG, Teofili L (2012) Endothelial progenitor cells and thrombosis. Thromb Res 129:309–313

    PubMed  CAS  Google Scholar 

  85. Liu J, Huang J, Yao WY, Ben QW, Chen DF, He XY, Li L, Yuan YZ (2012) The origins of vacularization in tumors. Front Biosci 17:2559–2565

    Google Scholar 

  86. Boos CJ, Lip GY, Blann AD (2006) Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol 48:1538–1547

    PubMed  CAS  Google Scholar 

  87. Kolvenbach R, Kreissig C, Ludwig E, Cagiannos C (2007) Stem cell use in critical limb ischemia. J Cardiovasc Surg (Torino) 48:39–44

    CAS  Google Scholar 

  88. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  89. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  90. Mead LE, Prater D, Yoder MC, Ingram DA (2008) Isolation and characterization of endothelial progenitor cells from human blood. Curr Protoc Stem Cell Biol Chapter 2:Unit 2C 1

    PubMed  Google Scholar 

  91. Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 99:2034–2040

    PubMed  CAS  Google Scholar 

  92. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13:201–206

    PubMed  CAS  Google Scholar 

  93. Resch T, Pircher A, Kahler CM, Pratschke J, Hilbe W (2012) Endothelial progenitor cells: current issues on characterization and challenging clinical applications. Stem Cell Rev 8:926–939

    PubMed  CAS  Google Scholar 

  94. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    PubMed  CAS  Google Scholar 

  95. Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294:L419–L430

    PubMed  CAS  Google Scholar 

  96. Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, Chen JZ (2007) Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 49:1566–1571

    PubMed  CAS  Google Scholar 

  97. Jurasz P, Courtman D, Babaie S, Stewart DJ (2010) Role of apoptosis in pulmonary hypertension: from experimental models to clinical trials. Pharmacol Ther 126:1–8

    PubMed  CAS  Google Scholar 

  98. Stewart DJ, Mei SH (2011) Cell-based therapies for lung vascular diseases: lessons for the future. Proc Am Thorac Soc 8:535–540

    PubMed  CAS  Google Scholar 

  99. Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, Shimizu Y (2004) Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng 10:771–779

    PubMed  Google Scholar 

  100. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96:442–450

    PubMed  CAS  Google Scholar 

  101. Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 106:203–211

    PubMed  CAS  Google Scholar 

  102. Zampetaki A, Kirton JP, Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78:413–421

    PubMed  CAS  Google Scholar 

  103. Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M et al (2006) Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 113:1442–1450

    PubMed  CAS  Google Scholar 

  104. Junhui Z, Xingxiang W, Guosheng F, Yunpeng S, Furong Z, Junzhu C (2008) Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir Med 102:1073–1079

    PubMed  Google Scholar 

  105. Fadini GP, Schiavon M, Rea F, Avogaro A, Agostini C (2007) Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 176:724–725, author reply 725

    PubMed  Google Scholar 

  106. Smadja DM, Mauge L, Nunes H, d’Audigier C, Juvin K, Borie R, Carton Z, Bertil S, Blanchard A, Crestani B et al (2013) Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16:147–157

    PubMed  CAS  Google Scholar 

  107. Hansmann G, Plouffe BD, Hatch A, von Gise A, Sallmon H, Zamanian RT, Murthy SK (2011) Design and validation of an endothelial progenitor cell capture chip and its application in patients with pulmonary arterial hypertension. J Mol Med (Berl) 89:971–983

    Google Scholar 

  108. Arciniegas E, Sutton AB, Allen TD, Schor AM (1992) Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J Cell Sci 103(Pt 2):521–529

    PubMed  CAS  Google Scholar 

  109. Arciniegas E, Ponce L, Hartt Y, Graterol A, Carlini RG (2000) Intimal thickening involves transdifferentiation of embryonic endothelial cells. Anat Rec 258:47–57

    PubMed  CAS  Google Scholar 

  110. Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43:161–172

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Piera-Velazquez S, Jimenez SA (2012) Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis Tissue Repair 5(Suppl 1):S7

    PubMed Central  PubMed  Google Scholar 

  113. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Diez M, Musri MM, Ferrer E, Barbera JA, Peinado VI (2010) Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc Res 88:502–511

    PubMed  CAS  Google Scholar 

  115. Li Z, Jimenez SA (2011) Protein kinase Cdelta and c-Abl kinase are required for transforming growth factor beta induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum 63:2473–2483

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Li Z, Wermuth PJ, Benn BS, Lisanti MP, Jimenez SA (2013) Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am J Pathol 182(2):325–331

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A et al (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180:780–787

    PubMed Central  PubMed  Google Scholar 

  118. Yao W, Firth AL, Sacks RS, Ogawa A, Auger WR, Fedullo PF, Madani MM, Lin GY, Sakakibara N, Thistlethwaite PA et al (2009) Identification of putative endothelial progenitor cells (CD34+CD133+Flk-1+) in endarterectomized tissue of patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 296:L870–L878

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR (2010) Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med 181:604–610

    PubMed  CAS  Google Scholar 

  120. Mafi P, Hindocha S, Mafi R, Griffin M, Khan WS (2011) Adult mesenchymal stem cells and cell surface characterization – a systematic review of the literature. Open Orthop J 5:253–260

    Google Scholar 

  121. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    PubMed  CAS  Google Scholar 

  122. Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A (2008) Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun 368:305–310

    PubMed  CAS  Google Scholar 

  123. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    PubMed  Google Scholar 

  124. Jiang L, Song XH, Liu P, Zeng CL, Huang ZS, Zhu LJ, Jiang YZ, Ouyang HW, Hu H (2012) Platelet-mediated mesenchymal stem cells homing to the lung reduces monocrotaline-induced rat pulmonary hypertension. Cell Transplant 21(7):1463–1475

    PubMed  Google Scholar 

  125. Jungebluth P, Luedde M, Ferrer E, Luedde T, Vucur M, Peinado VI, Go T, Schreiber C, Richthofen MV, Bader A et al (2011) Mesenchymal stem cells restore lung function by recruiting resident and non-resident proteins. Cell Transplant 20(10):1561–1574

    PubMed  Google Scholar 

  126. Sordi V (2009) Mesenchymal stem cell homing capacity. Transplantation 87:S42–S45

    PubMed  Google Scholar 

  127. Xie J, Hu D, Niu L, Qu S, Wang S, Liu S (2012) Mesenchymal stem cells attenuate vascular remodeling in monocrotaline-induced pulmonary hypertension rats. J Huazhong Univ Sci Technolog Med Sci 32:810–817

    PubMed  CAS  Google Scholar 

  128. Zhang Y, Liao S, Yang M, Liang X, Poon MW, Wong CY, Wang J, Zhou Z, Cheong SK, Lee CN et al (2012) Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension. Cell Transplant 21:2225–2239

    PubMed  Google Scholar 

  129. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2:170–181

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, Xu WG (2012) Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary funtion partly via VEGF-VEGF receptors. J Cell Biochem 114:323–335

    Google Scholar 

  131. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    PubMed  CAS  Google Scholar 

  132. Deng W, St Hilaire RC, Chattergoon NN, Jeter JR Jr, Kadowitz PJ (2006) Inhibition of vascular smooth muscle cell proliferation in vitro by genetically engineered marrow stromal cells secreting calcitonin gene-related peptide. Life Sci 78:1830–1838

    PubMed  CAS  Google Scholar 

  133. Anversa P, Perrella MA, Kourembanas S, Choi AM, Loscalzo J (2012) Regenerative pulmonary medicine: potential and promise, pitfalls and challenges. Eur J Clin Invest 42:900–913

    PubMed Central  PubMed  Google Scholar 

  134. Sage EK, Loebinger MR, Polak J, Janes SM (2008) The role of bone marrow-derived stem cells in lung regeneration and repair. In: StemBook. Harvard Stem Cell Institute, Cambridge, MA

    Google Scholar 

  135. Xu J, Qu J, Cao L, Sai Y, Chen C, He L, Yu L (2008) Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 214:472–481

    PubMed  CAS  Google Scholar 

  136. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, Katsumata T (2006) Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 114:I181–I185

    PubMed  Google Scholar 

  137. Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, Aslam M, Fernandez-Gonzalez A, Liu X, Baveja R, Kourembanas S (2011) Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 29:99–107

    PubMed Central  PubMed  CAS  Google Scholar 

  138. Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, Imaizumi T (2010) Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 105:409–417

    PubMed  CAS  Google Scholar 

  139. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 86:1111–1118

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Nikam VS, Schermuly RT, Dumitrascu R, Weissmann N, Kwapiszewska G, Morrell N, Klepetko W, Fink L, Seeger W, Voswinckel R (2010) Treprostinil inhibits the recruitment of bone marrow-derived circulating fibrocytes in chronic hypoxic pulmonary hypertension. Eur Respir J 36:1302–1314

    PubMed  CAS  Google Scholar 

  141. Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR et al (2011) Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol 187:2711–2722

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Stenmark KR, Frid MG, Yeager ME (2010) Fibrocytes: potential new therapeutic targets for pulmonary hypertension? Eur Respir J 36:1232–1235

    PubMed  CAS  Google Scholar 

  143. Yu L, Hales CA (2011) Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Respir Res 12:21

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Angelini DJ, Su Q, Kolosova IA, Fan C, Skinner JT, Yamaji-Kegan K, Collector M, Sharkis SJ, Johns RA (2010) Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) recruits bone marrow-derived cells to the murine pulmonary vasculature. PLoS One 5:e11251

    PubMed Central  PubMed  Google Scholar 

  145. Launay JM, Herve P, Callebert J, Mallat Z, Collet C, Doly S, Belmer A, Diaz SL, Hatia S, Cote F et al (2012) Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension. Blood 119:1772–1780

    PubMed  CAS  Google Scholar 

  146. Firth AL, Yao W, Ogawa A, Madani MM, Lin GY, Yuan JX (2010) Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Cell Physiol 298:C1217–C1225

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168:659–669

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU (2011) Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev 20:933–946

    PubMed  CAS  Google Scholar 

  149. Gambaryan N, Perros F, Montani D, Cohen-Kaminsky S, Mazmanian M, Renaud JF, Simonneau G, Lombet A, Humbert M (2011) Targeting of c-kit+ haematopoietic progenitor cells prevents hypoxic pulmonary hypertension. Eur Respir J 37:1392–1399

    PubMed  CAS  Google Scholar 

  150. Giangreco A, Shen H, Reynolds SD, Stripp BR (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286:L624–L630

    PubMed  CAS  Google Scholar 

  151. Summer R, Kotton DN, Sun X, Fitzsimmons K, Fine A (2004) Translational physiology: origin and phenotype of lung side population cells. Am J Physiol Lung Cell Mol Physiol 287:L477–L483

    PubMed  CAS  Google Scholar 

  152. Summer R, Kotton DN, Liang S, Fitzsimmons K, Sun X, Fine A (2005) Embryonic lung side population cells are hematopoietic and vascular precursors. Am J Respir Cell Mol Biol 33:32–40

    PubMed  CAS  Google Scholar 

  153. Peter Y, Sen N, Levantini E, Keller S, Ingenito EP, Ciner A, Sackstein R, Shapiro SD (2013) CD45/CD11b positive subsets of adult lung anchorage-independent cells harness epithelial stem cells in culture. J Tissue Eng Regen Med 7(7):572–583

    PubMed  CAS  Google Scholar 

  154. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36:598–606

    PubMed  CAS  Google Scholar 

  155. Mehrad B, Strieter RM (2012) Fibrocytes and the pathogenesis of diffuse parenchymal lung disease. Fibrogenesis Tissue Repair 5(Suppl 1):S22

    PubMed Central  PubMed  Google Scholar 

  156. Field JJ, Burdick MD, DeBaun MR, Strieter BA, Liu L, Mehrad B, Rose CE Jr, Linden J, Strieter RM (2012) The role of fibrocytes in sickle cell lung disease. PLoS One 7:e33702

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Andersson-Sjoland A, Nihlberg K, Eriksson L, Bjermer L, Westergren-Thorsson G (2011) Fibrocytes and the tissue niche in lung repair. Respir Res 12:76

    PubMed Central  PubMed  Google Scholar 

  158. Herzog EL, Bucala R (2010) Fibrocytes in health and disease. Exp Hematol 38:548–556

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Gomperts BN, Strieter RM (2007) Fibrocytes in lung disease. J Leukoc Biol 82:449–456

    PubMed  CAS  Google Scholar 

  160. Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M (2002) Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest 122:326S–334S

    PubMed  CAS  Google Scholar 

  161. Randell SH (2006) Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:718–725

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Glenny RW (2011) Emergence of matched airway and vascular trees from fractal rules. J Appl Physiol 110:1119–1129

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Liu X, Driskell RR, Engelhardt JF (2004) Airway glandular development and stem cells. Curr Top Dev Biol 64:33–56

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Stripp BR, Maxson K, Mera R, Singh G (1995) Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am J Physiol 269:L791–799

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Berns A (2005) Stem cells for lung cancer? Cell 121:811–813

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amy L. Firth or Jason X.-J. Yuan M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Firth, A.L., Fernandez, R.A., Yuan, J.XJ. (2014). Adult Lung Stem Cells. In: Turksen, K. (eds) Adult Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9569-7_12

Download citation

Publish with us

Policies and ethics