Skip to main content

Timetabling

  • Chapter
  • First Online:
  • 1362 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 89))

Abstract

Given a public transportation system and a line concept with frequencies, the next step in public transportation planning is to establish a timetable, i.e., to fix the exact points in time when the trains should arrive and depart at the stations. This decision process is known under the name of timetabling or train scheduling.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms, 2(2):153–177, 2006.

    Article  MathSciNet  Google Scholar 

  2. J. Anhalt. Eine iterative Heuristik für aperiodische Fahrplangestaltung mit OD-Paaren. Master’s thesis, Georg-August-Universität Göttingen, 2012. (in German).

    Google Scholar 

  3. M. Bellare, S. Goldwasser, C. Lund, and A. Russel. Efficient probabilistically checkable proofs and applications to approximation. In STOC ’93 Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 294–304, New York, USA, 1993. ACM.

    Google Scholar 

  4. R. Burdett and E. Kozan. A sequencing approach for train timetabling. OR Spectrum, 32(1):163–193, 2010.

    Article  MATH  Google Scholar 

  5. U. Brännlund, P. O. Lindberg, A. Nou, and J. E. Nilsson. Railway timetabling using lagrangian relaxation. Transportation Science, 32(4):358, 1998.

    Google Scholar 

  6. V. Cacchiani, A. Caprara, and P. Toth. Non-cyclic train timetabling and comparability graphs. Operations Research Letters, 38(3):179–184, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. On the interaction between robust timetable planning and delay management. Technical Report ARRIVAL-TR-0116, ARRIVAL project, 2007.

    Google Scholar 

  8. A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling problem. Operations Research, 50(5):851–861, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Cordone and F. Redaelli. Optimizing the demand captured by a railway system with a regular timetable. Transportation Research Part B: Methodological, 45(2):430–446, 2011.

    Article  Google Scholar 

  10. V. Cacchiani and P. Toth. Nominal and robust train timetabling problems. European Journal of Operational Research, 219(3):727–737, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing and scheduling. Transportation Science, 32(4):380–404, November 1998.

    Article  MATH  Google Scholar 

  12. J. R. Daduna and S. Voß. Practical experiences in schedule synchronization. In J. R. Daduna, I. Branco, and J. M. Pinto Paixão, editors, Computer-aided transit scheduling: proceedings of the Sixth International Workshop on Computer-aided Scheduling of Public Transport, volume 430 of Lecture Notes in Economics and Mathematical Systems, 1995.

    Google Scholar 

  13. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45:634–652, July 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R.H. Möhring, and C.D. Zaroliagis, editors, Robust and online large-scale optimization, volume 5868 of Lecture Note on Computer Science, pages 61–84. Springer, 2009.

    Google Scholar 

  15. M. Fischetti, S. Salvagnin, and A. Zanette. Fast approaches to improve the robustness of a railway timetable. Transportation Science, 43:321–335, 2009.

    Article  Google Scholar 

  16. M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  17. M. Goerigk and A. Schöbel. An empirical analysis of robustness concepts for timetabling. In T. Erlebach and M. Lübbecke, editors, Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS), volume 14 of OASIcs, pages 100–113, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

    Google Scholar 

  18. M. Goerigk and A. Schöbel. Engineering the modulo network simplex heuristic for the periodic timetabling problem. In P. M. Pardalos and S. Rebennack, editors, Experimental Algorithms, volume 6630 of Lecture Notes in Computer Science, pages 181–192. Springer Berlin Heidelberg, 2011.

    Google Scholar 

  19. M. Goerigk and A. Schöbel. Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers & Operations Research, 40(5):1363–1370, 2013.

    Article  MathSciNet  Google Scholar 

  20. A. Higgins, E. Kozan, and L. Ferreira. Heuristic techniques for single line train scheduling. Journal of Heuristics, 3(1):43–62, 1997.

    Article  MATH  Google Scholar 

  21. M. Heydar, M. E. H. Petering, and D. R. Bergmann. Mixed integer programming for minimizing the period of a cyclic railway timetable for a single track with two train types. Computers & Industrial Engineering, 66(1):171–185, 2013.

    Article  Google Scholar 

  22. M. Kaspi. Service oriented train timetabling. Master’s thesis, Tel Aviv University, 2010.

    Google Scholar 

  23. M. Kinder. Models for periodic timetabling. Master’s thesis, Technische Universität Berlin, 2008.

    Google Scholar 

  24. L. Kroon, G. Maróti, M. R. Helmrich, M. Vromans, and R. Dekker. Stochastic improvement of cyclic railway timetables. Transportation Research Part B: Methodological, 42(6):553–570, 2008.

    Article  Google Scholar 

  25. L. G. Kroon and L. W. P. Peeters. A variable trip time model for cyclic railway timetabling. Transportation Science, 37:198–212, 2003.

    Article  Google Scholar 

  26. C. Liebchen. A cut-based heuristic to produce almost feasible periodic railway timetables. In S. E. Nikoletseas, editor, Experimental and Efficient Algorithms, volume 3503 of Lecture Notes in Computer Science, pages 354–366. Springer Berlin Heidelberg, 2005.

    Google Scholar 

  27. C. Liebchen. Periodic Timetable Optimization in Public Transport. PhD thesis, Technische Universität Berlin, 2006. published by dissertation.de.

    Google Scholar 

  28. T. Lindner. Train Schedule Optimization in Public Rail Transport. PhD thesis, Technische Universität Braunschweig, 2000.

    Google Scholar 

  29. R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and methods. OR Spectrum, 33:843–883, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  30. C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. The concept of recoverable robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, editors, Robust and online large-scale optimization, volume 5868, pages 1–27. Springer, 2009.

    Google Scholar 

  31. C. Liebchen and R. H. Möhring. The modeling power of the periodic event scheduling problem: Railway timetables– and beyond. In F. Geraets, L. Kroon, A. Schöbel, D. Wagner, and C. D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages 3–40. Springer Berlin Heidelberg, 2007.

    Google Scholar 

  32. C. Liebchen, M. Proksch, and F. H. Wagner. Performance of algorithms for periodic timetable optimization. In G. Fandel, W. Trockel, M. Hickman, P. Mirchandani, and S. Voß, editors, Computer-aided Systems in Public Transport, volume 600 of Lecture Notes in Economics and Mathematical Systems, pages 151–180. Springer Berlin Heidelberg, 2008.

    Google Scholar 

  33. C. Liebchen, M. Schachtebeck, A. Schöbel, S. Stiller, and A. Prigge. Computing delay resistant railway timetables. Computers & Operations Research, 37(5):857–868, 2010.

    Article  MATH  Google Scholar 

  34. J. Lübbe. Passagierrouting und Taktfahrplanoptimierung. Master’s thesis, Technische Universität Berlin, 2009. (in German).

    Google Scholar 

  35. T. Lindner and U. T. Zimmermann. Cost optimal periodic train scheduling. Mathematical Methods of Operations Research, 62(2):281–295, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  36. K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Deutsches Zentrum für Luft– und Raumfahrt, Institut für Flugführung, Braunschweig, 1998. Habilitationsschrift.

    Google Scholar 

  37. K. Nachtigall and J. Opitz. Solving periodic timetable optimisation problems by modulo simplex calculations. In M. Fischetti and P. Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

    Google Scholar 

  38. K. Nachtigall and S. Voget. A genetic algorithm approach to periodic railway synchronization. Computers & Operations Research, 23(5):453–463, 1996.

    Article  MATH  Google Scholar 

  39. M. A. Odijk. A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research Part B, 30(6):455–464, 1996.

    Article  Google Scholar 

  40. M. A. Odijk. Railway Timetable Generation. PhD thesis, Technische Universiteit Delft, 1998.

    Google Scholar 

  41. M. A. Odijk, H. E. Romeijn, and H. van Maaren. Generation of classes of robust periodic railway timetables. Computers & Operations Research, 33(8):2283–2299, 2006.

    Article  MATH  Google Scholar 

  42. L. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus University Rotterdam, 2003.

    Google Scholar 

  43. R. T. Rockafellar. Network flows and monotropic optimization. John Wiley & Sons, Inc., 1984.

    MATH  Google Scholar 

  44. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, pages 475–484, New York, NY, USA, 1997. ACM.

    Google Scholar 

  45. M. Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness, and Integration. PhD thesis, Georg-August-Universität Göttingen, 2010.

    Google Scholar 

  46. M. Siebert and M. Goerigk. An experimental comparison of periodic timetabling models. Computers & Operations Research, 40(10):2251–2259, 2013.

    Article  MathSciNet  Google Scholar 

  47. A. Schöbel and A. Kratz. A bicriteria approach for robust timetabling. In R. K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 119–144. Springer Berlin Heidelberg, 2009.

    Google Scholar 

  48. M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public transportation models. In T. Erlebach and M. Lübbecke, editors, Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 14 of OASIcs, pages 156–169, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

    Google Scholar 

  49. M. Schmidt and A. Schöbel. Timetabling with passenger routing. Accepted for publication in OR Spectrum. 2013.

    Google Scholar 

  50. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2:550–581, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  51. R. C. W. Wong, T. W. Y. Yuen, K. W. Fung, and J. M. Y. Leung. Optimizing timetable synchronization for rail mass transit. Transportation Science, 42(1):57–69, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, M.E. (2014). Timetabling. In: Integrating Routing Decisions in Public Transportation Problems. Springer Optimization and Its Applications, vol 89. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9566-6_3

Download citation

Publish with us

Policies and ethics