Skip to main content

Line Planning

  • Chapter
  • First Online:
  • 1361 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 89))

Abstract

Given the public transportation network, i.e., information about the location of the stations, the tracks connecting the stations, and the lengths of the tracks, line planning aims at determining the lines, i.e., the routes served regularly by a train. Furthermore, in many line planning approaches, not only the routes which should be served are considered, but also the frequencies of the services are planned.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Prentice Hall, Inc., 1993.

    MATH  Google Scholar 

  2. J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path problem. Networks, 19(4):379–394, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A column-generation approach to line planning in public transport. Transportation Science, 41(1):123–132, 2007.

    Article  Google Scholar 

  4. R. Borndörfer, M. Grötschel, and M. E. Pfetsch. Models for line planning in public transport. In M. Hickman, P. Mirchandani, and S. Voß, editors, Computer-aided Systems in Public Transport, volume 600 of Lecture Notes in Economics and Mathematical Systems, pages 363–378. Springer Berlin Heidelberg, 2008.

    Google Scholar 

  5. R. Borndörfer and M. Karbstein. A Direct Connection Approach to Integrated Line Planning and Passenger Routing. In D. Delling and L. Liberti, editors, 12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 25 of OpenAccess Series in Informatics (OASIcs), pages 47–57, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  6. M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann. Optimal lines for railway systems. European Journal of Operational Research, 96(1):54–63, 1997.

    Article  MATH  Google Scholar 

  7. M. R. Bussieck, T. Lindner, and M. E. Lübbecke. A fast algorithm for near cost optimal line plans. Mathematical Methods of Operations Research, 59:205–220, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Borndörfer and M. Neumann. Models for line planning with transfers. Technical Report 10-11, ZIB, Takustr.7, 14195 Berlin, 2010.

    Google Scholar 

  9. R. Borndörfer, M. Neumann, and M. E. Pfetsch. The line connectivity problem. In B. Fleischmann, K.-H. Borgwardt, R. Klein, and A. Tuma, editors, Operations Research Proceedings 2008, pages 557–562. Springer Berlin Heidelberg, 2009.

    Google Scholar 

  10. M. Bussieck. Optimal Lines in Public Rail Transport. PhD thesis, Technische Universität Braunschweig, 1998.

    Google Scholar 

  11. I. Constantin and M. Florian. Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. International Transactions in Operational Research, 2(2):149, 1995.

    Google Scholar 

  12. T. A. Chua. The planning of urban bus routes and frequencies: A survey. Transportation, 12:147–172, 1984.

    Article  Google Scholar 

  13. M. T. Claessens, N. M. van Dijk, and P. J. Zwanefeld. Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110:474–489, 1998.

    Article  MATH  Google Scholar 

  14. H. Dienst. Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. PhD thesis, Technische Universität Braunschweig, 1978. (in German).

    Google Scholar 

  15. L. dell’Olio, J. L. Moura, and A. Ibeas. Bi-level mathematical programming model for locating bus stops and optimizing frequencies. Transportation Research Record: Journal of the Transportation Research Board, 1971, 2006.

    Google Scholar 

  16. R. Fuhse. Heuristiken zur Erstellung von Linienkonzepten. Master’s thesis, Georg-August-Universität Göttingen, 2008. (in German).

    Google Scholar 

  17. A. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.

    Google Scholar 

  18. M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  19. Z. Gao, H. Sun, and L. L. Shan. A continuous equilibrium network design model and algorithm for transit systems. Transportation Research Part B: Methodological, 38(3):235–250, 2004.

    Article  Google Scholar 

  20. J.-W. Goossens, S. van Hoesel, and L. Kroon. A branch-and-cut approach for solving railway line planning problems. Transportation Science, 38(3):379–393, 2004.

    Article  Google Scholar 

  21. J.-W. Goossens, S. van Hoesel, and L. Kroon. On solving multi-type railway line planning problems. European Journal of Operational Research, 168(2):403–424, 2006. Feature Cluster on Mathematical Finance and Risk Management.

    Google Scholar 

  22. J. F. Guan, Hai Yang, and S.C. Wirasinghe. Simultaneous optimization of transit line configuration and passenger line assignment. Transportation Research Part B, 40(10):885–902, 2006.

    Google Scholar 

  23. Y. Israeli and A. Ceder. Transit route design using scheduling and multiobjective programming techniques. In J. R. Daduna, I. Branco, and J. M. Pinto Paixão, editors, Computer-aided transit scheduling, volume 430 of Lecture Notes in Economics and Mathematical Systems, pages 56–75, Berlin, 1995. Springer.

    Google Scholar 

  24. W. Lampkin and P. D. Saalmans. The design of routes, service frequencies, and schedules for a municipal bus undertaking: a case study. Operational Research Quartely, 18:375–397, 1967.

    Article  Google Scholar 

  25. C. E. Mandl. Evaluation and optimization of urban public transportation networks. European Journal of Operational Research, 5(6):396–404, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Nachtigall and K. Jerosch. Simultaneous network line planning and traffic assignment. In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, 2008.

    Google Scholar 

  27. M. Pfetsch and R. Borndörfer. Routing in line planning for public transport. In H.-D. Haasis, H. Kopfer, and J. Schönberger, editors, Operations Research Proceedings 2005, volume 2005 of Operations Research Proceedings, pages 405–410. Springer Berlin Heidelberg, 2006.

    Google Scholar 

  28. C. A. Phillips. The network inhibition problem. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 776–785, New York, 1993. ACM.

    Google Scholar 

  29. L. A. Silman, Z. Barzily, and U. Passy. Planning the route system for urban busses. Computers & Operations research, 1:201–211, 1974.

    Article  Google Scholar 

  30. S. Scholl. Customer-Oriented Line Planning. PhD thesis, Technische Universität Kaiserslautern, 2005. published by dissertation.de.

    Google Scholar 

  31. A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum, pages 1–20, 2011. 10.1007/s00291-011-0251-6.

    Google Scholar 

  32. M. Schmidt. Line planning with equilibrium routing. Technical report, Preprint series, Institute for Numerical and Applied Mathematics, Georg-August-University Göttingen, 2012. submitted.

    Google Scholar 

  33. H. Sonntag. Ein heuristisches Verfahren zum Entwurf nachfrageorientierter Linienführung im öffentlichen Personennahverkehr. ZOR - Zeitschrift für Operations-Research, 23:B15, 1979. (in German).

    Google Scholar 

  34. A. Schöbel and S. Scholl. Line planning with minimal transfers. In 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl Seminar Proceedings, 2006.

    Google Scholar 

  35. M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public transportation models. In T. Erlebach and M. Lübbecke, editors, Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 14 of OASIcs, pages 156–169, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

    Google Scholar 

  36. M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public transportation models. Technical report, Preprint series, Institute for Numerical and Applied Mathematics, Georg-August-University Göttingen, 2012. submitted.

    Google Scholar 

  37. L. M. Torres, R. Torres, R. Borndörfer, and M. E. Pfetsch. Line planning on tree networks with applications to the quito trolebús system. International Transactions in Operational Research, 18:455–472, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  38. Z. Wang and J. Crowcroft. Quality of service routing for supporting multimedia applications. IEEE Journal on Selected areas in communications, 14(7):1228–1234, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, M.E. (2014). Line Planning. In: Integrating Routing Decisions in Public Transportation Problems. Springer Optimization and Its Applications, vol 89. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9566-6_2

Download citation

Publish with us

Policies and ethics