Periodontitis and Oxidative Stress: Human Studies

Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

The knowledge of the pathogenic effects of oxidative stress in the periodontium, discussed in previous chapters, has stimulated several lines of research into the associations between redox status and periodontitis. Human studies in this topic range from epidemiological to treatment studies. This chapter will discuss the poorly researched topic of redox proteins in periodontal diseases and will review the association between measures of oxidative stress and presence of periodontitis. Particular emphasis will be placed on the potential role of periodontal disease pathogenic factors to determine both local and systemic oxidative stress fingerprints, measured as damage to lipids, proteins, or DNA.

Keywords

High Performance Liquid Chromatography Glutathione Adduct Carbonyl Luminal 

References

  1. 1.
    Lang NP, Bartold M, Cullinan M, Jeffcoat M, Mombelli A, Murakami S (1999) Consensus report: aggressive periodontitis. Ann Periodontol 4:53CrossRefGoogle Scholar
  2. 2.
    Nibali L, Donos N, Brett PM, Parkar M, Ellinas T, Llorente M et al (2008) A familial analysis of aggressive periodontitis – clinical and genetic findings. J Periodontal Res 43(6):627–634PubMedCrossRefGoogle Scholar
  3. 3.
    Lindhe J, Lamster RI, Charles A, Chung CP, Flemmig T, Kinane D, Listgarten M, Löe H, Schoor R, Seymour G, Somerman M (1999) Consensus report: chronic periodontitis. Ann Periodontol 4:38CrossRefGoogle Scholar
  4. 4.
    Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK (2009) Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 11(11):2741–2758PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pedone E, Limauro D, D’Ambrosio K, De Simone G, Bartolucci S (2010) Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 67(22):3797–3814PubMedCrossRefGoogle Scholar
  6. 6.
    Maulik N, Das DK (2008) Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta 1780(11):1368–1382PubMedCrossRefGoogle Scholar
  7. 7.
    Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M (2013) The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19:1266–1303PubMedCrossRefGoogle Scholar
  8. 8.
    Laurindo FR, Pescatore LA, Fernandes DC (2012) Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 52(9):1954–1969PubMedCrossRefGoogle Scholar
  9. 9.
    Yamada S, Ding Y, Sasaguri Y (2012) Peroxiredoxin 4: critical roles in inflammatory diseases. J UOEH 34(1):27–39PubMedGoogle Scholar
  10. 10.
    Lillig CH, Berndt C, Holmgren A (2008) Glutaredoxin systems. Biochim Biophys Acta 1780(11):1304–1317PubMedCrossRefGoogle Scholar
  11. 11.
    Wallis AK, Freedman RB (2013) Assisting oxidative protein folding: how do protein disulphide-isomerases couple conformational and chemical processes in protein folding? Top Curr Chem 328:1–34PubMedCrossRefGoogle Scholar
  12. 12.
    Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H et al (1989) ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8(3):757–764PubMedPubMedCentralGoogle Scholar
  13. 13.
    Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396(1):120–124PubMedCrossRefGoogle Scholar
  14. 14.
    Matsushima S, Zablocki D, Sadoshima J (2011) Application of recombinant thioredoxin1 for treatment of heart disease. J Mol Cell Cardiol 51(4):570–573PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88(3):445–462PubMedCrossRefGoogle Scholar
  16. 16.
    Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79(9):3476–3491PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Goulhen F, Grenier D, Mayrand D (2003) Oral microbial heat-shock proteins and their potential contributions to infections. Crit Rev Oral Biol Med 14(6):399–412PubMedCrossRefGoogle Scholar
  18. 18.
    Phelan SA, Beier DR, Higgins DC, Paigen B (2002) Confirmation and high resolution mapping of an atherosclerosis susceptibility gene in mice on Chromosome 1. Mamm Genome 13(10):548–553PubMedCrossRefGoogle Scholar
  19. 19.
    Sparling NE, Phelan SA (2003) Identification of multiple transcripts for antioxidant protein 2 (Aop2): differential regulation by oxidative stress and growth factors. Redox Rep 8(2):87–94PubMedCrossRefGoogle Scholar
  20. 20.
    Ye P, Simonian M, Nadkarni MA, Decarlo AA, Chapple CC, Hunter N (2005) Identification of epithelial auto-antigens associated with periodontal disease. Clin Exp Immunol 139(2):328–337PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gonçalves RB, Leshem O, Bernards K, Webb JR, Stashenko PP, Campos-Neto A (2006) T-cell expression cloning of Porphyromonas gingivalis genes coding for T helper-biased immune responses during infection. Infect Immun 74(7):3958–3966PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Shibata Y, Okano S, Shiroza T, Tahara T, Nakazawa K, Kataoka S, Ishida I, Kobayashi T, Yoshie H, Abiko Y (2011) Characterization of human-type monoclonal antibodies against reduced form of hemin binding protein 35 from Porphyromonas gingivalis. J Periodontal Res 46(6):673–681PubMedCrossRefGoogle Scholar
  23. 23.
    Maeda T, Maeda H, Yamabe K, Mineshiba J, Tanimoto I, Yamamoto T, Naruishi K, Kokeguchi S, Takashiba S (2010) Highly expressed genes in a rough-colony-forming phenotype of Aggregatibacter actinomycetemcomitans: implication of a mip-like gene for the invasion of host tissue. FEMS Immunol Med Microbiol 58(2):226–236PubMedCrossRefGoogle Scholar
  24. 24.
    Lean HJ, Kirstein B, Urry Z, Chambers T, Fuller K (2004) Thioredoxin-1 mediates osteoclast stimulation by reactive oxygen species. Biochem Biophys Res Commun 321:845–850PubMedCrossRefGoogle Scholar
  25. 25.
    Ishikawa S, Kuno A, Tanno M, Miki T, Kouzu H, Itoh T, Sato T, Sunaga D, Murase H, Miura T (2012) Role of connexin-43 in protective PI3K-Akt-GSK-3β signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol 302:H2536–H2544PubMedCrossRefGoogle Scholar
  26. 26.
    Nibali L, Donos N (2013) Periodontitis and redox status: a review. Curr Pharm Des 19:2687–2697PubMedCrossRefGoogle Scholar
  27. 27.
    Buico A, Cassino C, Ravera M, Betta PG, Osella D (2009) Oxidative stress and total antioxidant capacity in human plasma. Redox Rep 14(3):125–131PubMedCrossRefGoogle Scholar
  28. 28.
    Parmigiani S, Payer C, Massari A, Bussolati G, Bevilacqua G (2000) Normal values of reactive oxygen metabolites on the cord-blood of full-term infants with a colorimetric method. Acta Biomed Ateneo Parmense 71(1–2):59–64PubMedGoogle Scholar
  29. 29.
    Carratelli M, Porcaro L, Ruscica M, De Simone E, Bertelli AA, Corsi MM (2001) Reactive oxygen metabolites and prooxidant status in children with Down’s syndrome. Int J Clin Pharmacol Res 21(2):79–84PubMedGoogle Scholar
  30. 30.
    Iamele L, Fiocchi R, Vernocchi A (2002) Evaluation of an automated spectrophotometric assay for reactive oxygen metabolites in serum. Clin Chem Lab Med 40(7):673–676PubMedCrossRefGoogle Scholar
  31. 31.
    Tamaki N, Tomofuji T, Maruyama T, Ekuni D, Yamanaka R, Takeuchi N et al (2008) Relationship between periodontal condition and plasma reactive oxygen metabolites in patients in the maintenance phase of periodontal treatment. J Periodontol 79(11):2136–2142PubMedCrossRefGoogle Scholar
  32. 32.
    Tamaki N, Tomofuji T, Ekuni D, Yamanaka R, Yamamoto T, Morita M (2009) Short-term effects of non-surgical periodontal treatment on plasma level of reactive oxygen metabolites in patients with chronic periodontitis. J Periodontol 80(6):901–906PubMedCrossRefGoogle Scholar
  33. 33.
    Tamaki N, Tomofuji T, Ekuni D, Yamanaka R, Morita M (2011) Periodontal treatment decreases plasma oxidized LDL level and oxidative stress. Clin Oral Investig 15(6):953–958PubMedCrossRefGoogle Scholar
  34. 34.
    Harma MI, Harma M, Erel O (2006) D-ROM test detects ceruloplasmin, not oxidative stress. Chest 130(4):1276PubMedCrossRefGoogle Scholar
  35. 35.
    Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111PubMedCrossRefGoogle Scholar
  36. 36.
    Akalin FA, Baltacioglu E, Alver A, Karabulut E (2007) Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clin Periodontol 34(7):558–565PubMedCrossRefGoogle Scholar
  37. 37.
    Esen C, Alkan BA, Kirnap M, Akgül O, Işıkoğlu S, Erel O (2012) The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. J Periodontol 83(6):773–779PubMedCrossRefGoogle Scholar
  38. 38.
    Wei D, Zhang XL, Wang YZ, Yang CX, Chen G (2010) Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy. Aust Dent J 55(1):70–78PubMedCrossRefGoogle Scholar
  39. 39.
    Akalin FA, Baltacioğlu E, Alver A, Karabulut E (2009) Total antioxidant capacity and superoxide dismutase activity levels in serum and gingival crevicular fluid in pregnant women with chronic periodontitis. J Periodontol 80(3):457–467PubMedCrossRefGoogle Scholar
  40. 40.
    Abou Sulaiman AE, Shehadeh RMH (2010) Assessment of total antioxidant capacity and the use of vitamin c in the treatment of non-smokers with chronic periodontitis. J Periodontol 81(11):1547–1554PubMedCrossRefGoogle Scholar
  41. 41.
    Baltacioglu E, Akalin FA, Alver A, Balaban F, Unsal M, Karabulut E (2006) Total antioxidant capacity and superoxide dismutase activity levels in serum and gingival crevicular fluid in post-menopausal women with chronic periodontitis. J Clin Periodontol 33(6):385–392PubMedCrossRefGoogle Scholar
  42. 42.
    Konopka T, Krol K, Kopec W, Gerber H (2007) Total antioxidant status and 8-hydroxy-2′-deoxyguanosine levels in gingival and peripheral blood of periodontitis patients. Arch Immunol Ther Exp (Warsz) 55(6):417–422CrossRefGoogle Scholar
  43. 43.
    Su HX, Gornitsky M, Velly AM, Yu HL, Benarroch M, Schipper HM (2009) Salivary DNA, lipid, and protein oxidation in nonsmokers with periodontal disease. Free Radic Biol Med 46(7):914–921PubMedCrossRefGoogle Scholar
  44. 44.
    Komatsu F, Kagawa Y, Ishiguro K, Kawabata T, Purvee B, Otgon J et al (2009) The association of very high hair manganese accumulation and high oxidative stress in Mongolian people. Curr Aging Sci 2:28–42PubMedCrossRefGoogle Scholar
  45. 45.
    Masi S, Salpea KD, Li KW, Parkar M, Nibali L, Donos N et al (2011) Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic Biol Med 50(6):730–735PubMedCrossRefGoogle Scholar
  46. 46.
    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76PubMedCrossRefGoogle Scholar
  47. 47.
    Sculley DV, Langley-Evans SC (2003) Periodontal disease is associated with lower antioxidant capacity in whole saliva and evidence of increased protein oxidation. Clin Sci 105(2):167–172PubMedCrossRefGoogle Scholar
  48. 48.
    Chapple ILC, Mason GI, Garner I, Matthews JB, Thorpe GH, Maxwell SRJ et al (1997) Enhanced chemiluminescent assay for measuring the total antioxidant capacity of serum, saliva and crevicular fluid. Ann Clin Biochem 34:412–421PubMedCrossRefGoogle Scholar
  49. 49.
    Brock GR, Butterworth CJ, Matthews JB, Chapple ILC (2004) Local and systemic total antioxidant capacity in periodontitis and health. J Clin Periodontol 31(7):515–521PubMedCrossRefGoogle Scholar
  50. 50.
    Chapple ILC, Brock GR, Milward MR, Ling N, Matthews JB (2007) Compromised GCF total antioxidant capacity in periodontitis: cause or effect? J Clin Periodontol 34(2):103–110PubMedGoogle Scholar
  51. 51.
    Allen EM, Matthews JB, O’Halloran DJ, Griffiths HR, Chapple ILC (2011) Oxidative and inflammatory status in type 2 diabetes patients with periodontitis. J Clin Periodontol 38(10):894–901PubMedCrossRefGoogle Scholar
  52. 52.
    Sun Y, Oberley LW, Li Y (1988) A Simple method for clinical assay of superoxide-dismutase. Clin Chem 34(3):497–500PubMedGoogle Scholar
  53. 53.
    Akalin FA, Isiksal E, Baltacioglu E, Renda N, Karabulut E (2008) Superoxide dismutase activity in gingiva in type-2 diabetes mellitus patients with chronic periodontitis. Arch Oral Biol 53(1):44–52PubMedCrossRefGoogle Scholar
  54. 54.
    Wei PF, Ho KY, Ho YP, Wu YM, Yang YH, Tsai CC (2004) The investigation of glutathione peroxidase, lactoferrin, myeloperoxidase and interleukin-1 beta in gingival crevicular fluid: implications for oxidative stress in human periodontal diseases. J Periodontal Res 39(5):287–293PubMedCrossRefGoogle Scholar
  55. 55.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  56. 56.
    Borges I, Moreira EAM, Wilhem D, de Oliveira TB, da Silva MBS, Froede TS (2007) Proinflammatory and oxidative stress markers in patients with periodontal disease. Mediators Inflamm 2007:45794PubMedCrossRefGoogle Scholar
  57. 57.
    Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM et al (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40(5):378–384PubMedCrossRefGoogle Scholar
  58. 58.
    Chapple ILC, Brock G, Eftimiadi C, Matthews JB (2002) Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health and disease. Mol Pathol 55(6):367–373PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Grant MM, Brock GR, Matthews JB, Chapple ILC (2010) Crevicular fluid glutathione levels in periodontitis and the effect of non-surgical therapy. J Clin Periodontol 37(1):17–23PubMedCrossRefGoogle Scholar
  60. 60.
    Zilinskas J, Kubilius R, Zekonis G, Zekonis J (2011) Total antioxidant capacity of venous blood, blood plasma, and serum of patients with periodontitis, and the effect of Traumeel S on these characteristics. Medicina 47(4):193–199PubMedGoogle Scholar
  61. 61.
    Demehin AA, Abugo OO, Rifkind JM (2001) The reduction of nitroblue tetrazolium by red blood cells: a measure of red cell membrane antioxidant capacity and hemoglobin-membrane binding sites. Free Radic Res 34(6):605–620PubMedCrossRefGoogle Scholar
  62. 62.
    Griffiths GS (2003) Formation, collection and significance of gingival crevice fluid. Periodontol 2000 31:32–42PubMedCrossRefGoogle Scholar
  63. 63.
    Akalin FA, Toklu E, Renda N (2005) Analysis of superoxide dismutase activity levels in gingiva and gingival crevicular fluid in patients with chronic periodontitis and periodontally healthy controls. J Clin Periodontol 32(3):238–243PubMedCrossRefGoogle Scholar
  64. 64.
    Patel SP, Pradeep AR, Chowdhry S (2009) Crevicular fluid levels of plasma glutathione peroxidase (eGPx) in periodontal health and disease. Arch Oral Biol 54(6):543–548PubMedCrossRefGoogle Scholar
  65. 65.
    Ekuni D, Tomofuji T, Irie K, Kasuyama K, Umakoshi M, Azuma T et al (2010) Effects of periodontitis on aortic insulin resistance in an obese rat model. Lab Invest 90(3):348–359PubMedCrossRefGoogle Scholar
  66. 66.
    Herrera BS, Martins-Porto R, Maia-Dantas A, Campi P, Spolidorio LC, Costa SKP et al (2011) iNOS-derived nitric oxide stimulates osteoclast activity and alveolar bone loss in ligature-induced periodontitis in rats. J Periodontol 82(11):1608–1615PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    D’Aiuto F, Nibali L, Parkar M, Patel K, Suvan J, Donos N (2010) Oxidative stress, systemic inflammation, and severe periodontitis. J Dent Res 89(11):1241–1246PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Chapple ILC, Milward MR, Dietrich T (2007) The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations. J Nutr 137(3):657–664PubMedGoogle Scholar
  69. 69.
    Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Yagi K (1978) Lipid peroxide and human disease. Chem Phys Lipids 45:337–357CrossRefGoogle Scholar
  71. 71.
    Panjamurthy K, Manoharan S, Ramachandran CR (2005) Lipid peroxidation and antioxidant status in patients with periodontitis. Cell Mol Biol Lett 10(2):255–264PubMedGoogle Scholar
  72. 72.
    Young IS, Trimble ER (1991) Measurement of malondialdehyde in plasma by high-performance liquid-chromatography with fluorometric detection. Ann Clin Biochem 28:504–508PubMedCrossRefGoogle Scholar
  73. 73.
    Monteiro AM, Jardini MAN, Alves S, Giarnpaoli V, Aubin ECQ, Neto AMF et al (2009) Cardiovascular disease parameters in periodontitis. J Periodontol 80(3):378–388PubMedCrossRefGoogle Scholar
  74. 74.
    Bastos AS, Graves DT, Loureiro AP, Rossa Junior C, Abdalla DS, Faulin TD et al (2012) Lipid peroxidation is associated with the severity of periodontal disease and local inflammatory markers in patients with type 2 diabetes. J Clin Endocrinol Metab 97:1353–1362CrossRefGoogle Scholar
  75. 75.
    Singer RE, Moss K, Beck JD, Offenbacher S (2009) Association of systemic oxidative stress with suppressed serum IgG to commensal oral biofilm and modulation by periodontal infection. Antioxid Redox Signal 11(12):2973–2983PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hickman MA, Boggess KA, Moss KL, Beck JD, Offenbacher S (2011) Maternal periodontal disease is associated with oxidative stress during pregnancy. Am J Perinatol 28(3):247–251PubMedCrossRefGoogle Scholar
  77. 77.
    Halliwell B, Lee CY (2010) Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 13(2):145–156. doi: 10.1089/ars.2009.2934 PubMedCrossRefGoogle Scholar
  78. 78.
    Wolfram RM, Budinsky AC, Eder A, Presenhuber C, Nell A, Sperr W, Sinzinger H (2006) Salivary isoprostanes indicate increased oxidation injury in periodontitis with additional tobacco abuse. Biofactors 28(1):21–31PubMedCrossRefGoogle Scholar
  79. 79.
    Dean RT, Fu SL, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18PubMedPubMedCentralGoogle Scholar
  80. 80.
    Carty JL, Bevan R, Waller H, Mistry N, Cooke M, Lunec J et al (2000) The effects of vitamin C supplementation on protein oxidation in healthy volunteers. Biochem Biophys Res Commun 273(2):729–735PubMedCrossRefGoogle Scholar
  81. 81.
    Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32(11):1102–1115PubMedCrossRefGoogle Scholar
  82. 82.
    Sugano N, Kawamoto K, Numazaki H, Murai S, Ito K (2000) Detection of mitochondrial DNA mutations in human gingival tissues. J Oral Sci 42:221–223PubMedCrossRefGoogle Scholar
  83. 83.
    Takane M, Sugano N, Iwasaki H, Iwano Y, Shimizu N, Ito K (2002) New biomarker evidence of oxidative DNA damage in whole saliva from clinically healthy and periodontally diseased individuals. J Periodontol 73(5):551–554PubMedCrossRefGoogle Scholar
  84. 84.
    Sawamoto Y, Sugano N, Tanaka H, Ito K (2005) Detection of periodontopathic bacteria and an oxidative stress marker in saliva from periodontitis patients. Oral Microbiol Immunol 20(4):216–220PubMedCrossRefGoogle Scholar
  85. 85.
    Sezer U, Cicek Y, Canakci CF (2012) Increased salivary levels of 8-hydroxydeoxyguanosine may be a marker for disease activity for periodontitis. Dis Markers 32(3):165–172PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Fyhrquist F, Saijonmaa O (2012) Telomere length and cardiovascular aging. Ann Med 44(Suppl 1):S138–S142. doi: 10.3109/07853890.2012.660497 PubMedCrossRefGoogle Scholar
  87. 87.
    von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344CrossRefGoogle Scholar
  88. 88.
    Oikawa S, Kawanishi S (1999) Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 453(3):365–368PubMedCrossRefGoogle Scholar
  89. 89.
    Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99(2):156–164PubMedCrossRefGoogle Scholar
  90. 90.
    Skinner HG, Gangnon RE, Litzelman K, Johnson RA, Chari ST, Petersen GM, Boardman LA (2012) Telomere length and pancreatic cancer: a case–control study. Cancer Epidemiol Biomarkers Prev 21(11):2095–2100PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Cui Y, Cai Q, Qu S, Chow WH, Wen W, Xiang YB, Wu J, Rothman N, Yang G, Shu XO, Gao YT, Zheng W (2012) Association of leukocyte telomere length with colorectal cancer risk: nested case–control findings from the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev 21(10):1807–1813PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shen J, Terry MB, Liao Y, Gurvich I, Wang Q, Senie RT, Santella RM (2012) Genetic variation in telomere maintenance genes, telomere length and breast cancer risk. PLoS One 7(9):e44308PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Takahashi K, Nishida H, Takeda H, Shin K (2004) Telomere length in leukocytes and cultured gingival fibroblasts from patients with aggressive periodontitis. J Periodontol 75(1):84–90PubMedCrossRefGoogle Scholar
  94. 94.
    Söder B, Jin LJ, Klinge B, Söder PO (2007) Periodontitis and premature death: a 16-year longitudinal study in a Swedish urban population. J Periodontal Res 42(4):361–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Periodontology Unit and Department of Clinical ResearchUniversity College London (UCL) Eastman Dental Institute and HospitalLondonUK
  2. 2.Division of Microbial DiseasesUCL Eastman Dental InstituteLondonUK
  3. 3.Department of Drug Sciences, Section of BiochemistryUniversity of CataniaCataniaItaly

Personalised recommendations