The Role of Protein Oxidative Modification in Periodontal Diseases

  • Ryutaro IsodaEmail author
  • Kenji MatsushitaEmail author
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Recent advancement in the field of oxidation research revealed that oxidative stress-induced post-translational modification (OPTM) is involved in the pathogenesis of many chronic inflammatory diseases. One of the underlying mechanisms of the effect of OPTM adducts is the breakdown of immunological tolerance. Both inflammatory bowel disease (IBD) and periodontal disease (PD) are chronic inflammatory diseases of which pathogenesis may include complicated relationship between commensal bacteria and host immune responses. In this review article, we will focus on the effect of OPTM and the role it plays on the breakdown of immunological tolerance to intestinal or oral commensal bacteria, which can play an important role in the pathogenesis of IBD and PD.


Inflammatory Bowel Disease Periodontal Disease Chronic Inflammatory Disease Crohn Disease Molecular Mimicry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208PubMedCrossRefGoogle Scholar
  2. 2.
    Stadtman ER (1992) Protein oxidation and aging. Science 257(5074):1220–1224PubMedCrossRefGoogle Scholar
  3. 3.
    Chapple IL, Matthews JB (2007) The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 43:160–232. doi: 10.1111/j.1600-0757.2006.00178.x PubMedCrossRefGoogle Scholar
  4. 4.
    Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(Pt 1):1–18PubMedCentralPubMedGoogle Scholar
  5. 5.
    Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32(3–4):307–326. doi: 10.1081/DMR-100102336 PubMedCrossRefGoogle Scholar
  6. 6.
    Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91(3C):14S–22SPubMedCrossRefGoogle Scholar
  7. 7.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166. doi: 10.1038/nrm1569 PubMedCrossRefGoogle Scholar
  8. 8.
    Huggins TG, Wells-Knecht MC, Detorie NA, Baynes JW, Thorpe SR (1993) Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem 268(17):12341–12347PubMedGoogle Scholar
  9. 9.
    Neuzil J, Gebicki JM, Stocker R (1993) Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J 293(Pt 3):601–606PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bachur NR, Gordon SL, Gee MV, Kon H (1979) NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc Natl Acad Sci U S A 76(2):954–957PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chevion M (1988) A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radic Biol Med 5(1):27–37PubMedCrossRefGoogle Scholar
  12. 12.
    Levine RL, Oliver CN, Fulks RM, Stadtman ER (1981) Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci U S A 78(4):2120–2124PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9(4):315–325PubMedCrossRefGoogle Scholar
  14. 14.
    Fucci L, Oliver CN, Coon MJ, Stadtman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A 80(6):1521–1525PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Canakci CF, Cicek Y, Canakci V (2005) Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry (Moscow) 70(6):619–628. doi: 10.1007/s10541-005-0161-9 CrossRefGoogle Scholar
  16. 16.
    Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  17. 17.
    Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119(6):598–620PubMedGoogle Scholar
  18. 18.
    Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  19. 19.
    Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem/FEBS 82(2):563–567CrossRefGoogle Scholar
  20. 20.
    Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91(23):10771–10778PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Weighardt H, Feterowski C, Veit M, Rump M, Wagner H, Holzmann B (2000) Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J Immunol 165(8):4537–4543PubMedCrossRefGoogle Scholar
  22. 22.
    Segal AW, Abo A (1993) The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 18(2):43–47PubMedCrossRefGoogle Scholar
  23. 23.
    Davies MJ, Truscott RJ (2001) Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B Biol 63(1–3):114–125CrossRefGoogle Scholar
  24. 24.
    Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta 1504(2–3):196–219PubMedCrossRefGoogle Scholar
  25. 25.
    Jeong Y, Chaupin DF, Matsushita K, Yamakuchi M, Cameron SJ, Morrell CN, Lowenstein CJ (2009) Aldosterone activates endothelial exocytosis. Proc Natl Acad Sci U S A 106(10):3782–3787. doi: 10.1073/pnas.0804037106 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115(2):139–150PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Matsushita K, Morrell CN, Lowenstein CJ (2004) Sphingosine 1-phosphate activates Weibel–Palade body exocytosis. Proc Natl Acad Sci U S A 101(31):11483–11487. doi: 10.1073/pnas.0400185101 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Matsushita K, Morrell CN, Mason RJ, Yamakuchi M, Khanday FA, Irani K, Lowenstein CJ (2005) Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor. J Cell Biol 170(1):73–79. doi: 10.1083/jcb.200502031 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Matsushita K, Yamakuchi M, Morrell CN, Ozaki M, O’Rourke B, Irani K, Lowenstein CJ (2005) Vascular endothelial growth factor regulation of Weibel–Palade-body exocytosis. Blood 105(1):207–214. doi: 10.1182/blood-2004-04-1519 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Into T, Kanno Y, Dohkan J, Nakashima M, Inomata M, Shibata K, Lowenstein CJ, Matsushita K (2007) Pathogen recognition by Toll-like receptor 2 activates Weibel–Palade body exocytosis in human aortic endothelial cells. J Biol Chem 282(11):8134–8141. doi: 10.1074/jbc.M609962200 PubMedCrossRefGoogle Scholar
  31. 31.
    Into T, Inomata M, Nakashima M, Shibata K, Hacker H, Matsushita K (2008) Regulation of MyD88-dependent signaling events by S nitrosylation retards Toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol 28(4):1338–1347. doi: 10.1128/MCB.01412-07 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, Witztum JL (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200(11):1359–1370. doi: 10.1084/jem.20031763 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Toyoda K, Nagae R, Akagawa M, Ishino K, Shibata T, Ito S, Shibata N, Yamamoto T, Kobayashi M, Takasaki Y, Matsuda T, Uchida K (2007) Protein-bound 4-hydroxy-2-nonenal: an endogenous triggering antigen of anti-DNA response. J Biol Chem 282(35):25769–25778. doi: 10.1074/jbc.M703039200 PubMedCrossRefGoogle Scholar
  34. 34.
    International Workshop for a Classification of Periodontal Diseases and Conditions. Papers. Oak Brook, Illinois, October 30–November 2, 1999 (1999). Ann Periodontol (the American Academy of Periodontology) 4(1):i, 1–112. doi: 10.1902/annals.1999.4.1.i
  35. 35.
    Ara T, Kurata K, Hirai K, Uchihashi T, Uematsu T, Imamura Y, Furusawa K, Kurihara S, Wang PL (2009) Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res 44(1):21–27. doi: 10.1111/j.1600-0765.2007.01041.x PubMedCrossRefGoogle Scholar
  36. 36.
    Brandtzaeg P, Kraus FW (1965) Autoimmunity and periodontal disease. Odontol Tidskr 73:281–393PubMedGoogle Scholar
  37. 37.
    Gemmell E, Yamazaki K, Seymour GJ (2002) Destructive periodontitis lesions are determined by the nature of the lymphocytic response. Crit Rev Oral Biol Med 13(1):17–34PubMedCrossRefGoogle Scholar
  38. 38.
    Indriolo A, Greco S, Ravelli P, Fagiuoli S (2011) What can we learn about biofilm/host interactions from the study of inflammatory bowel disease. J Clin Periodontol 38(Suppl 11):36–43. doi: 10.1111/j.1600-051X.2010.01680.x PubMedCrossRefGoogle Scholar
  39. 39.
    Lamster IB, Novak MJ (1992) Host mediators in gingival crevicular fluid: implications for the pathogenesis of periodontal disease. Crit Rev Oral Biol Med 3(1–2):31–60PubMedGoogle Scholar
  40. 40.
    Teng YT (2006) Protective and destructive immunity in the periodontium: part 1—innate and humoral immunity and the periodontium. J Dent Res 85(3):198–208PubMedCrossRefGoogle Scholar
  41. 41.
    Zaric S, Shelburne C, Darveau R, Quinn DJ, Weldon S, Taggart CC, Coulter WA (2010) Impaired immune tolerance to Porphyromonas gingivalis lipopolysaccharide promotes neutrophil migration and decreased apoptosis. Infect Immun 78(10):4151–4156. doi: 10.1128/IAI.00600-10 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Pabst O, Mowat AM (2012) Oral tolerance to food protein. Mucosal Immunol 5(3):232–239. doi: 10.1038/mi.2012.4 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kawai T, Paster BJ, Komatsuzawa H, Ernst CW, Goncalves RB, Sasaki H, Ouhara K, Stashenko PP, Sugai M, Taubman MA (2007) Cross-reactive adaptive immune response to oral commensal bacteria results in an induction of receptor activator of nuclear factor-kappaB ligand (RANKL)-dependent periodontal bone resorption in a mouse model. Oral Microbiol Immunol 22(3):208–215PubMedCrossRefGoogle Scholar
  44. 44.
    Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333(1):1–9. doi: 10.1111/j.1574-6968.2012.02579.x PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu H, Li YR (2012) Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood) 237(5):474–480. doi: 10.1258/ebm.2011.011358 CrossRefGoogle Scholar
  46. 46.
    Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 102(3):448–455PubMedCentralPubMedGoogle Scholar
  47. 47.
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211. doi: 10.1038/ng1954 PubMedCrossRefGoogle Scholar
  48. 48.
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604. doi: 10.1038/ng2032 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Brandtzaeg P (2001) Inflammatory bowel disease: clinics and pathology. Do inflammatory bowel disease and periodontal disease have similar immunopathogeneses? Acta Odontol Scand 59(4):235–243PubMedCrossRefGoogle Scholar
  50. 50.
    Afar B, Engel D, Clark EA (1992) Activated lymphocyte subsets in adult periodontitis. J Periodontal Res 27(2):126–133PubMedCrossRefGoogle Scholar
  51. 51.
    Berglundh T, Liljenberg B, Lindhe J (2002) Some cytokine profiles of T-helper cells in lesions of advanced periodontitis. J Clin Periodontol 29(8):705–709PubMedCrossRefGoogle Scholar
  52. 52.
    Berglundh T, Donati M (2005) Aspects of adaptive host response in periodontitis. J Clin Periodontol 32(Suppl 6):87–107. doi: 10.1111/j.1600-051X.2005.00820.x PubMedCrossRefGoogle Scholar
  53. 53.
    Celenligil H, Kansu E, Ruacan S, Eratalay K, Caglayan G (1993) In situ characterization of gingival mononuclear cells in rapidly progressive periodontitis. J Periodontol 64(2):120–127PubMedCrossRefGoogle Scholar
  54. 54.
    Charon J, Toto PD, Gargiulo AW (1981) Activated macrophages in human periodontitis. J Periodontol 52(6):328–335PubMedCrossRefGoogle Scholar
  55. 55.
    Hillmann G, Krause S, Ozdemir A, Dogan S, Geurtsen W (2001) Immunohistological and morphometric analysis of inflammatory cells in rapidly progressive periodontitis and adult periodontitis. Clin Oral Investig 5(4):227–235PubMedCrossRefGoogle Scholar
  56. 56.
    Joachim F, Barber P, Newman HN, Osborn J (1990) The plasma cell at the advancing front of the lesion in chronic periodontitis. J Periodontal Res 25(1):49–59PubMedCrossRefGoogle Scholar
  57. 57.
    Lappin DF, Koulouri O, Radvar M, Hodge P, Kinane DF (1999) Relative proportions of mononuclear cell types in periodontal lesions analyzed by immunohistochemistry. J Clin Periodontol 26(3):183–189PubMedCrossRefGoogle Scholar
  58. 58.
    Socransky SS, Haffajee AD, Goodson JM, Lindhe J (1984) New concepts of destructive periodontal disease. J Clin Periodontol 11(1):21–32PubMedCrossRefGoogle Scholar
  59. 59.
    Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293. doi: 10.1089/ars.2007.1782 PubMedCrossRefGoogle Scholar
  60. 60.
    Wuttge DM, Bruzelius M, Stemme S (1999) T-cell recognition of lipid peroxidation products breaks tolerance to self proteins. Immunology 98(2):273–279PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Naito Y, Takagi T, Yoshikawa T (2007) Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol 42(10):787–798. doi: 10.1007/s00535-007-2096-y PubMedCrossRefGoogle Scholar
  62. 62.
    Turunen SP, Kummu O, Harila K, Veneskoski M, Soliymani R, Baumann M, Pussinen PJ, Horkko S (2012) Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein. PLoS One 7(4):e34910. doi: 10.1371/journal.pone.0034910 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Genco CA, Odusanya BM, Potempa J, Mikolajczyk-Pawlinska J, Travis J (1998) A peptide domain on gingipain R which confers immunity against Porphyromonas gingivalis infection in mice. Infect Immun 66(9):4108–4114PubMedCentralPubMedGoogle Scholar
  64. 64.
    Gibson FC 3rd, Genco CA (2001) Prevention of Porphyromonas gingivalis-induced oral bone loss following immunization with gingipain R1. Infect Immun 69(12):7959–7963. doi: 10.1128/IAI.69.12.7959-7963.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Yasaki-Inagaki Y, Inagaki S, Yamada S, Okuda K, Ishihara K (2006) Production of protective antibodies against Porphyromonas gingivalis strains by immunization with recombinant gingipain domains. FEMS Immunol Med Microbiol 47(2):287–295. doi: 10.1111/j.1574-695X.2006.00091.x PubMedCrossRefGoogle Scholar
  66. 66.
    O’Brien-Simpson NM, Paolini RA, Reynolds EC (2000) RgpA-Kgp peptide-based immunogens provide protection against Porphyromonas gingivalis challenge in a murine lesion model. Infect Immun 68(7):4055–4063PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Gmur R, Thurnheer T, Guggenheim B (1999) Dominant cross-reactive antibodies generated during the response to a variety of oral bacterial species detect phosphorylcholine. J Dent Res 78(1):77–85PubMedCrossRefGoogle Scholar
  68. 68.
    Schenkein HA, Berry CR, Purkall D, Burmeister JA, Brooks CN, Tew JG (2001) Phosphorylcholine-dependent cross-reactivity between dental plaque bacteria and oxidized low-density lipoproteins. Infect Immun 69(11):6612–6617. doi: 10.1128/IAI.69.11.6612-6617.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Schenkein HA, Gunsolley JC, Best AM, Harrison MT, Hahn CL, Wu J, Tew JG (1999) Antiphosphorylcholine antibody levels are elevated in humans with periodontal diseases. Infect Immun 67(9):4814–4818PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan

Personalised recommendations