Advertisement

New Theories and Their Clinical Relevance to the Onset and Development of Periodontal Diseases

Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Periodontal disease is one of the most prevalent diseases suffered by humans. The tooth loss damage does not produce mortality but the pathological mechanisms involved have common conditions with cardiovascular disease and diabetes, main causes of death in the developing countries. The cause of periodontal diseases is attributed to bacteria that form a microbial biofilm. Periodontitis has been shown to result from an imbalance among the natural microbial biofilm on the teeth, dental plaque, and the host inflammatory/immune response. Produce an irreversible alveolar bone resorption that leads to teeth loss. Nowadays the key question is why in some patients the inflammatory response to bacterial infections is limited to gingivitis and in others produces alveolar bone loss periodontitis. Also, a small proportion of subjects exhibit severe and extensive periodontitis in any given age-group, but the proportion affected is greater in older age-groups. Therefore, our efforts should be to identify what are the characteristics of these patients to prevent and start the treatment as soon as possible. One of the possible mechanisms is an altered inflammatory response. We review new theories about inflammation and their clinical relevance to the onset and development of periodontal diseases, mainly at the cellular level. It has been highlighted the influence in the cellular response of the:
  1. (a)

    Biological/cell membrane and the lipid metabolism

     
  2. (b)

    Energy production process: mitochondria

     
  3. (c)

    Energy production control: AMPK system

     
  4. (d)

    Aggression recognition: inflammasome

     
  5. (e)

    Debris elimination: apoptosis/autophagy/hormesis

     

In this chapter we try to highlight the new theories and their clinical relevance to the onset and development of periodontal diseases that will change our way of managing our periodontal patients and should change the periodontal teaching in the future.

Keywords

Lipid Raft Nicotinamide Adenine Dinucleotide Human Gingival Fibroblast Periodontitis Patient Regulate Energy Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albandar JM, Rams TE (2002) Global epidemiology of periodontal diseases. Periodontol 2000 29:7–10PubMedCrossRefGoogle Scholar
  2. 2.
    König J, Holtfreter B, Kocher T (2010) Periodontal health in Europe: future trends based on treatment needs and the provision of periodontal services—position paper 1. Eur J Dent Educ 14(Suppl 1):4–24PubMedCrossRefGoogle Scholar
  3. 3.
    Moore WE, Moore LV (1994) The bacteria of periodontal diseases. Periodontol 2000 5:66–77PubMedCrossRefGoogle Scholar
  4. 4.
    Lepp PW, Brinig MM, Ouverney CC et al (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci U S A 101:6176–6181PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144PubMedCrossRefGoogle Scholar
  6. 6.
    Thomson WM, Sheiham A, Spencer AJ (2012) Sociobehavioral aspects of periodontal disease. Periodontol 2000 60:54–63PubMedCrossRefGoogle Scholar
  7. 7.
    Sertznig P, Seifert M, Tilgen W, Reichrath J (2008) Peroxisome proliferator-activated receptors (PPARs) and the human skin: importance of PPARs in skin physiology and dermatologic diseases. Am J Clin Dermatol 9:15–31PubMedCrossRefGoogle Scholar
  8. 8.
    Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278:28–45PubMedCrossRefGoogle Scholar
  9. 9.
    Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–550PubMedCrossRefGoogle Scholar
  10. 10.
    Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525PubMedCrossRefGoogle Scholar
  11. 11.
    Liu YC, Lerner UH, Teng YT (2010) Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000 52:163–206PubMedCrossRefGoogle Scholar
  12. 12.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  13. 13.
    Pike LJ (2008) The challenge of lipid rafts. J Lipid Res 50:S323–S328PubMedCrossRefGoogle Scholar
  14. 14.
    German JB (2011) Dietary lipids from an evolutionary perspective: sources, structures and functions. Matern Child Nutr 7(2):2–16PubMedCrossRefGoogle Scholar
  15. 15.
    Kien CL (2009) Dietary interventions for metabolic syndrome: role of modifying dietary fats. Curr Diab Rep 9:43–50PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cascio G, Schiera G, Di Liegro I (2012) Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases. Curr Diabetes Rev 8:2–17PubMedCrossRefGoogle Scholar
  17. 17.
    Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Sato M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: a meta-analysis. Diabetes Care 32:959–965PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679PubMedCrossRefGoogle Scholar
  19. 19.
    Micha R, Mozaffarian D (2008) Trans fatty acids: effects on cardiometabolic health and implications for policy. Prostaglandins Leukot Essent Fatty Acids 79:147–152PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Yaqoob P, Shaikh SR (2010) The nutritional and clinical significance of lipid rafts. Curr Opin Clin Nutr Metab Care 13:156–166PubMedCrossRefGoogle Scholar
  22. 22.
    Yaqoob P (2009) The nutritional significance of lipid rafts. Annu Rev Nutr 29:257–282PubMedCrossRefGoogle Scholar
  23. 23.
    Ramirez-Tortosa MC, Quiles JL, Battino M, Granados S, Morillo JM, Bompadre S, Newman HN, Bullon P (2010) Periodontitis is associated with altered plasma fatty acids and cardiovascular risk markers. Nutr Metab Cardiovasc Dis 20:133–139PubMedCrossRefGoogle Scholar
  24. 24.
    Zimmer C (2009) On the origin of eukaryotes. Science 325:666–668PubMedCrossRefGoogle Scholar
  25. 25.
    Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Battino M, Bullon P, Wilson M, Newman H (1999) Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med 10:458–476PubMedCrossRefGoogle Scholar
  27. 27.
    World Health Organization (2005) The World Health Organization warns of the rising threat of heart disease and stroke as overweight and obesity rapidly increase. http://www.who.int/mediacentre/news/releases/2005/pr44/en/index.html
  28. 28.
    Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys GJ (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 85:219–225PubMedCrossRefGoogle Scholar
  29. 29.
    Bullon P, Morillo JM, Ramirez-Tortosa MC, Quiles JL, Newman HN, Battino M (2009) Metabolic syndrome and periodontitis: is oxidative stress a common link? J Dent Res 88:503–518PubMedCrossRefGoogle Scholar
  30. 30.
    Bullon P, Cordero MD, Quiles JL, Morillo JM, del Carmen Ramirez-Tortosa M, Battino M (2011) Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic Biol Med 50:1336–1343PubMedCrossRefGoogle Scholar
  31. 31.
    Hardie DG, Ross FA, Hawley SA (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19:1222–1236PubMedCrossRefGoogle Scholar
  32. 32.
    Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262PubMedCrossRefGoogle Scholar
  33. 33.
    Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559PubMedCrossRefGoogle Scholar
  34. 34.
    Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100PubMedCrossRefGoogle Scholar
  35. 35.
    Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227:95–105PubMedCrossRefGoogle Scholar
  36. 36.
    Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161PubMedCrossRefGoogle Scholar
  37. 37.
    Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG (2012) The inflammasome puts obesity in the danger zone. Cell Metab 15:10–18PubMedCrossRefGoogle Scholar
  38. 38.
    Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, Gorgun CZ, Hotamisligil GS (2010) Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140:338–348PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Gordy C, He YW (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3:17–27PubMedCrossRefGoogle Scholar
  40. 40.
    Martin SJ, Henry CM, Cullen SP (2012) A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 46:387–397PubMedCrossRefGoogle Scholar
  41. 41.
    Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging (Albany, NY) 4:330–349Google Scholar
  42. 42.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bullon P, Cordero MD, Quiles JL, Ramirez-Tortosa MC, Gonzalez-Alonso A, Alfonsi S, Garcia-Marin R, de Miguel M, Battino M (2012) Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Med 10:122PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Martins I, Galluzzi L, Kroemer G (2011) Hormesis, cell death and aging. Aging (Albany, NY) 3:821–828Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Facultad de OdontologiaUniversidad de SevillaSevillaSpain

Personalised recommendations