Periodontitis and Liver Diseases

  • Koichiro Irie
  • Daisuke Ekuni
  • Takaaki Tomofuji
  • Manabu Morita
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Periodontitis, which is a chronic inflammatory disease caused by oral bacterial infection, is considered to be a risk factor for systemic disease. The liver is an important organ closely associated with lipid and glucose metabolism. Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease. In this chapter, the relationship between periodontitis and liver diseases, focusing mainly on NAFLD progression, is summarized. Periodontitis increases the serum lipopolysaccharide level, contributing to liver injury. In addition, clinical and animal studies have shown that periodontal inflammation induces overproduction of lipid peroxide in the periodontal lesion, which is involved in progression of liver diseases. That liver abnormalities may indicate a risk for periodontitis and that periodontitis may be a risk factor for the progression of liver diseases are discussed.


Endoplasmic Reticulum Stress Hepatic Steatosis Tooth Brushing Periodontal Treatment Hepatic Insulin Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Williams RC (1990) Periodontal disease. N Engl J Med 322:373–382PubMedCrossRefGoogle Scholar
  2. 2.
    Meley BL, Oates TW (2006) American academy of periodontology: diabetes mellitus and periodontal diseases. J Periodontol 77:1289–1303CrossRefGoogle Scholar
  3. 3.
    Cutler CW, Iacopino AM (2003) Periodontal disease: links with serum lipid/triglyceride levels? Review and new data. J Int Acad Periodontol 5:47–51PubMedGoogle Scholar
  4. 4.
    Morrison HI, Ellison LF, Taylor GW (1999) Periodontal disease and risk of fatal coronary heart and cerebrovascular diseases. J Cardiovasc Risk 6:7–11PubMedGoogle Scholar
  5. 5.
    Sculley DV, Langley-Evans SC (2002) Salivary antioxidants and periodontal disease status. Proc Nutr Soc 61:137–143PubMedCrossRefGoogle Scholar
  6. 6.
    Valko M, Leibfritz D, Moncol J, Gronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human diseases. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  7. 7.
    Cahill A, Wang X, Hoek JB (2004) Increased oxidative damage to mitochondrial DNA following chronic ethanol consumption. Alcohol 235:49–58Google Scholar
  8. 8.
    Ekuni D, Tomofuji T, Sanbe T, Irie K, Azuma T, Maruyama T, Tamaki N, Murakami J, Kokeguchi S, Yamamoto T (2009) Vitamin C intake attenuates the degree of experimental atherosclerosis induced by periodontitis in the rat by decreasing oxidative stress. Arch Oral Biol 54:495–502PubMedCrossRefGoogle Scholar
  9. 9.
    Panjamurthy K, Mannoharan S, Ramachandran CR (1999) Lipid peroxidation and antioxidant status in patients with periodontitis. Cell Mol Biol Lett 10:255–264Google Scholar
  10. 10.
    Sobaniec H, Sobaniec-Lotowska ME (2000) Morphological examinations of hard tissues of periodontium and evaluation of selected processes of lipid peroxidation in blood serum of rats in the course of experimental periodontitis. Med Sci Monit 6:875–881PubMedGoogle Scholar
  11. 11.
    Butterfield DA, Bader Lange ML, Sultana R (2010) Involvement of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 1801:924–929PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Singh M, Nam DT, Arseneault M, Ramassamy C (2010) Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein. J Alzheimers Dis 21:741–756PubMedGoogle Scholar
  13. 13.
    Davies SS, Roberts LJ 2nd (2011) F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med 50:559–566PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wiswedel I, Hirsch D, Carluccio F, Hampl H, Siems W (2005) F2-isoprostanes as biomarkers of lipid peroxidation in patients with chronic renal failure. Biofactors 24:201–208PubMedCrossRefGoogle Scholar
  15. 15.
    Poli G, Biasi F, Leonarduzzi G (2008) 4-Hydroxynonenal-protein adduct: a reliable biomarkers of lipid oxidation in liver diseases. Mol Aspects Med 29:67–71PubMedCrossRefGoogle Scholar
  16. 16.
    Saito T, Shimazaki Y, Koga T, Tsuzuki M, Ohshima A (2006) Relationship between periodontitis and hepatic condition in Japanese women. J Int Acad Periodontol 8:89–95PubMedGoogle Scholar
  17. 17.
    Ohyama H, Nakasho K, Yamanegi K, Noiri Y, Kuhara A, Kato-Kogoe N, Yamada N, Hata M, Nishimura F, Ebisu S, Terada N (2009) An unusual autopsy case of pyogenic liver abscess caused by periodontal bacteria. Jpn J Infect Dis 62:381–383PubMedGoogle Scholar
  18. 18.
    Tomofuji T, Sanbe T, Ekuni D, Azuma T, Irie K, Maruyama T, Tamaki N, Yamamoto T (2008) Oxidative damage of liver induced by ligature-induced periodontitis and chronic ethanol consumption. Arch Oral Biol 53:1113–1118PubMedCrossRefGoogle Scholar
  19. 19.
    Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 18:1221–1231CrossRefGoogle Scholar
  20. 20.
    Ludwing J, Viggiano TR, McGill DB, Oh BJ (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55:434–438Google Scholar
  21. 21.
    Adams LA, Knuiman MW, Divitini ML, Olynyk JK (2008) Body mass index is a stronger predictor of alanine aminotransaminase levels than alcohol consumption. J Gastroenterol Hepatol 23:1089–1093PubMedCrossRefGoogle Scholar
  22. 22.
    Liou I, Kowdley KV (2006) Natural history of nonalcoholic steatohepatitis. J Clin Gastroenterol 40:511–516Google Scholar
  23. 23.
    Diehl AM, Goodman Z, Ishak KG (1998) Alcohol-like disease in nonalcoholics: a clinical and histologic comparison with alcohol-induced liver injury. Gastroenterology 95:1056–1062Google Scholar
  24. 24.
    Abdelmalek MF, Diehl AM (2007) Nonalcoholic fatty liver disease as a complication of insulin resistance. Med Clin North Am 91:1125–1149PubMedCrossRefGoogle Scholar
  25. 25.
    Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini M, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917–923PubMedCrossRefGoogle Scholar
  26. 26.
    Stefan N, Haring HU (2011) The metabolically benign and malignant fatty liver. Diabetes 60:2011–2017PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wierzbicki AS, Oben J (2012) Nonalcoholic fatty liver disease and lipids. Curr Opin Lipidol 23:345–352PubMedCrossRefGoogle Scholar
  29. 29.
    Bays HE (2011) Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol 57:2461–2473PubMedCrossRefGoogle Scholar
  30. 30.
    Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, Cline GW, DePaoli AM, Taylor SI, Gorden P, Shulman GI (2002) Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 109:1345–1350PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Tarugi P, Averna M (2011) Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv Clin Chem 54:81–107PubMedCrossRefGoogle Scholar
  32. 32.
    Petersen KF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, Zhang XM, Dziura J, Lifton RP, Shulman GI (2010) Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 362:1082–1089PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Tailleux A, Wouters K, Staels B (2012) Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta 1821:809–818PubMedCrossRefGoogle Scholar
  34. 34.
    Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, Kim JK, Lee AS (2010) Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes 59:6–16PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG (2012) The inflammasome puts obesity in the danger zone. Cell Metab 15:10–18PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang X, Xu A, Chung SK, Cresser JH, Sweeney G, Wong RL, Lin A, Lam KS (2011) Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes 60:486–495PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Bataille AM, Manautou JE (2012) Nrf2: a potential target for new therapeutics in liver disease. Clin Pharmacol Ther 92:340–348PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52:59–69PubMedCrossRefGoogle Scholar
  40. 40.
    Aldaba-Muruato LR, Moreno MG, Shibayama M, Tsutsumi V, Muriel P (2012) Protective effects of allopurinol against acute liver damage and cirrhosis induced by carbon tetrachloride: modulation of NF-kappaB, cytokine production and oxidative stress. Biochim Biophys Acta 1820:65–75PubMedCrossRefGoogle Scholar
  41. 41.
    Ivanov AV, Smirnova OA, Ivanova ON, Masalova OV, Kochetkov SN, Isaguliants MG (2011) Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS ONE 6:e24957PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Hagen TM, Huang S, Curnutte J, Fowler P, Martinez V, Wehr CM, Ames BN, Chisari FV (1994) Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A 91:12808–12812PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Furuta M, Ekuni D, Yamamoto T, Irie K, Koyama R, Sanbe T, Yamanaka R, Morita M, Kuroki K, Tobe K (2010) Relationship between periodontitis and hepatic abnormalities in young adults. Acta Odontol Scand 68:27–33PubMedCrossRefGoogle Scholar
  44. 44.
    Jaiswal G, Deo V, Bhongrade M, Jaiswal S (2011) Serum alkaline phosphatase: a potential marker in the progression of periodontal disease in cirrhosis patients. Quintessence Int 42:345–348PubMedGoogle Scholar
  45. 45.
    Louthan MV, Theriot JA, Zimmerman E, Stutts JT, McClain CJ (2005) Decreased prevalence of nonalcoholic fatty liver disease in black obese children. J Pediatr Gastroenterol Nutr 41:426–429PubMedCrossRefGoogle Scholar
  46. 46.
    Tamaki N, Takaki A, Tomofuji T, Endo Y, Kasuyama K, Ekuni D, Yasunaka T, Yamamoto K, Morita M (2011) Stage of hepatocellular carcinoma is associated with periodontitis. J Clin Periodontol 38:1015–1020PubMedCrossRefGoogle Scholar
  47. 47.
    Feingold KR, Staprans I, Memon RA, Moser AH, Shigenaga JK, Doerrler W, Dinarello CA, Grunfeld C (1992) Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res 33:1765–1776PubMedGoogle Scholar
  48. 48.
    Tomofuji T, Ekuni D, Yamanaka R, Kusano H, Azuma T, Sanbe T, Tamaki N, Yamamoto T, Watanabe T, Miyauchi M, Takata T (2007) Chronic administration of lipopolysaccharide and proteases induces periodontal inflammation and hepatic steatosis in rats. J Periodontol 78:1999–2006PubMedCrossRefGoogle Scholar
  49. 49.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772PubMedCrossRefGoogle Scholar
  50. 50.
    Saito T, Hayashida H, Furugen R (2007) Metabolic endotoxemia initiates obesity and insulin resistance: diabetes. Diabetes 56:1761–1772, Comment on: Cani et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772CrossRefGoogle Scholar
  51. 51.
    Yoneda M, Naka S, Nakano K, Wada K, Endo H, Mawatari H, Imajo K, Nomura R, Hokamura K, Ono M, Murata S, Tohnai I, Sumida Y, Shima T, Kuboniwa M, Umemura K, Kamisaki Y, Amano A, Okanoue T, Ooshima T, Nakajima A (2012) Involvement of a periodontal pathogen, porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol 12:16PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Furusho H, Miyauchi M, Hyogo H, Inubushi T, Ao M, Ouhara K, Hisatune J, Kurihara H, Sugai M, Hayes CN, Nakahara T, Aikata H, Takahashi S, Chayama K, Takata T (2013) Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. J Gastroenterol 48:1259–1270Google Scholar
  53. 53.
    Yamamoto T, Tomofuji T, Tamaki N, Ekuni D, Azuma T, Sanbe T (2010) Effects of topical application of lipopolysaccharide and proteases on hepatic injury induced by high-cholesterol diet in rats. J Periodontal Res 45:129–135PubMedCrossRefGoogle Scholar
  54. 54.
    Schwartz J, Stinson FL, Parker RB (1972) The passage of tritiated bacterial endotoxin across intact gingival crevicular epithelium. J Periodontol 43:270–276PubMedCrossRefGoogle Scholar
  55. 55.
    Solga SF, Diehl A (2003) Non-alcoholic fatty liver disease: limen-liver interactions and possible role for probiotics. J Hepatol 38:681–687PubMedCrossRefGoogle Scholar
  56. 56.
    Amano A, Nakagawa I, Kataoka K, Morisaki I, Hamada S (1999) Distribution of porphyromonas gingivalis strains with fimA genotypes in periodontitis patients. J Clin Microbiol 37:1426–1430PubMedCentralPubMedGoogle Scholar
  57. 57.
    Nakagawa I, Amano A, Ohara-Nemoto Y, Endoh N, Morisaki I, Kimura S, Kawabata S, Hamada S (2002) Identification of a new variant of fimA gene of porphyromonas gingivalis and its distribution in adults and disabled populations with periodontitis. J Periodontal Res 37:425–432PubMedCrossRefGoogle Scholar
  58. 58.
    Nelson RG, Shlossman M, Budding LM, Pettitt DJ, Saad MF, Genco RJ, Knowler WC (1990) Periodontal disease and NIDDM in Pima Indians. Diabetes Care 13:836–840PubMedCrossRefGoogle Scholar
  59. 59.
    Sconyers JR, Crawford JJ, Moriarty JD (1973) Relationship of bacteremia to tooth brushing in patients with periodontitis. J Am Dent Assoc 87:616–622PubMedGoogle Scholar
  60. 60.
    Carroll GC, Sebor RJ (1980) Dental flossing and its relationship to transient bacteremia. J Periodontol 51:691–692PubMedCrossRefGoogle Scholar
  61. 61.
    Forner L, Larsen T, Kilian M, Holmstrup P (2006) Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 33:401–407PubMedCrossRefGoogle Scholar
  62. 62.
    Steel DM, Whitehead AS (1994) The major acute phase reactant: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 15:81–88PubMedCrossRefGoogle Scholar
  63. 63.
    Chitsazi MT, Pourabbas R, Shirmohammadi A, Ahmadi Zenouz G, Vatankhah AH (2008) Association of periodontal diseases with elevation of serum C-reactive protein and body mass index. J Dent Res Dent Clin Dent Prospects 2:9–14PubMedCentralPubMedGoogle Scholar
  64. 64.
    Noack B, Genco RJ, Trevisan M, Grossi S, Zambon JJ, De Nardin E (2001) Periodontal infections contribute to elevated systemic C-reactive protein level. J Periodontol 72:1221–1227PubMedCrossRefGoogle Scholar
  65. 65.
    Bain JL, Lester SR, Henry WD, Bishop CM, Turnage AA, Naftel JP, Johnson RB (2009) Comparative gender differences in local and systemic concentrations of pro-inflammatory cytokines in rats with experimental periodontitis. J Periodontal Res 44:133–140PubMedCrossRefGoogle Scholar
  66. 66.
    Pussinen PJ, Tuomisto K, Jousilahti P, Havulinna AS, Sundvall J, Salomaa V (2007) Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol 27:1433–1439PubMedCrossRefGoogle Scholar
  67. 67.
    Ebersole JL, Cappelli D, Mott G, Kesavalu L, Holt SC, Singer RE (1999) Systemic manifestations of periodontitis in the non-human primate. J Periodontal Res 34:358–362PubMedCrossRefGoogle Scholar
  68. 68.
    Lamster IB, Novak MJ (1992) Host mediators in gingival crevicular fluid: implications for the pathogenesis of periodontal disease. Crit Rev Oral Biol Med 3:31–60PubMedGoogle Scholar
  69. 69.
    Ranney RR (1991) Immunologic mechanisms of pathogenesis in periodontal disease: an assessment. J Periodontal Res 26:243–254PubMedCrossRefGoogle Scholar
  70. 70.
    Kinane DF, Adonogianaki E, Moughal N, Winstanley FP, Mooney J, Thornhill M (1991) Immunocytochemical characteristics of cellular infiltrate, related endothelial changes and determination of GCF acute-phase proteins during human experimental gingivitis. J Periodontal Res 26:286–288PubMedCrossRefGoogle Scholar
  71. 71.
    Page RC (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 26:230–242PubMedCrossRefGoogle Scholar
  72. 72.
    Tomofuji T, Azuma T, Kusano H, Sanbe T, Ekuni D, Tamaki N, Yamamoto T, Watanabe T (2006) Oxidative damage of periodontal tissue in the rat periodontitis model: effects of a high-cholesterol diet. FEBS Lett 580:3601–3604PubMedCrossRefGoogle Scholar
  73. 73.
    Maruyama T, Tomofuji T, Endo Y, Irie K, Azuma T, Ekuni D, Tamaki N, Yamamoto T, Morita M (2011) Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Arch Oral Biol 56:48–53PubMedCrossRefGoogle Scholar
  74. 74.
    Tomofuji T, Ekuni D, Irie K, Azuma T, Tamaki N, Maruyama T, Yamamoto T, Watanabe T, Morita M (2011) Relationships between periodontal inflammation, lipid peroxide and oxidative damage of multiple organs in rats. Biomed Res 32:343–349PubMedCrossRefGoogle Scholar
  75. 75.
    Karaağaç N, Salman F, Doğru-Abbasoğlu S, Uysal M (2011) Changes in prooxidant-antioxidant balance in tissues of rats following long-term hyperglycemic status. Endocr Res 36:124–133PubMedCrossRefGoogle Scholar
  76. 76.
    Ekuni D, Endo Y, Irie K, Azuma T, Tamaki N, Tomofuji T, Morita M (2010) Imbalance of oxidative/anti-oxidative status induced by periodontitis is involved in apoptosis of rat submandibular glands. Arch Oral Biol 55:170–176PubMedCrossRefGoogle Scholar
  77. 77.
    Nager RM, Salameh F, Reznick AZ, Livshits V, Nahir AM (2003) Salivary gland involvement in rheumatoid arthritis and its relationship to induced oxidative stress. Rheumatology (Oxford) 42:1234–1241CrossRefGoogle Scholar
  78. 78.
    Abdollahi M, Fooladian F, Emami B, Zafari K, Bahreini-Moghadam A (2003) Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum Exp Toxicol 22:587–592PubMedCrossRefGoogle Scholar
  79. 79.
    de la Cal C, Lomniczi A, Mohn CE, De Laurentiis A, Casal M, Chiarenza A, Paz D, McCann SM, Rettori V, Elverdín JC (2006) Decrease in salivary secretion by radiation mediated by nitric oxide and prostaglandins. Neuroimmunomodulation 13:19–27PubMedCrossRefGoogle Scholar
  80. 80.
    Tamaki N, Tomofuji T, Ekuni D, Yamanaka R, Yamamoto T, Morita M (2009) Short-term of non-surgical periodontal treatment on plasma level of reactive oxygen metabolites in patients with chronic periodontitis. J Periodontol 80:901–906PubMedCrossRefGoogle Scholar
  81. 81.
    Ekuni D, Tomofuji T, Tamaki N, Sanbe H, Azuma T, Yamanaka R, Yamamoto T, Watanabe T (2008) Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Arch Oral Biol 53:324–329PubMedCrossRefGoogle Scholar
  82. 82.
    Tomofuji T, Ekuni D, Sanbe T, Azuma T, Tamaki N, Irie K, Maruyama T, Yamamoto T, Watanabe T, Miyauchi M, Takata T (2009) Effects of improvement in periodontal inflammation by tooth brushing on serum lipopolysaccharide concentration and liver injury in rats. Acta Odontol Scand 67:200–205PubMedCrossRefGoogle Scholar
  83. 83.
    Tamaki N, Tomofuji T, Ekuni D, Yamanaka R, Morita M (2011) Periodontal treatment decreases plasma oxidized LDL level and oxidative stress. Clin Oral Investig 15:953–958PubMedCrossRefGoogle Scholar
  84. 84.
    Oz SG, Fentoglu O, Kilicarslan A, Guven GS, Tanrtover MD, Aykac Y, Sozen T (2007) Beneficial effects of periodontal treatment on metabolic control of hypercholesterolemia. South Med 100:686–691CrossRefGoogle Scholar
  85. 85.
    Yamazaki K, Honda T, Oda T, Ueki-Maruyama K, Nakajima T, Yoshie H, Seymour GJ (2005) Effects of periodontal treatment on the C-reactive protein and proinflammatory cytokine levels in Japanese periodontitis patients. J Periodontal Res 40:53–58PubMedCrossRefGoogle Scholar
  86. 86.
    Elter JR, Hinderliter AL, Offenbacher S, Beck JD, Caughey M, Brodala N, Madianos PN (2006) The effects of periodontal therapy on vascular endothelial function: a pilot trial. Am Heart J 151:47PubMedCrossRefGoogle Scholar
  87. 87.
    Grossi SG, Skrepcinski FB, DeCaro T, Robertson DC, Ho AW, Dunford RG, Genco RJ (1997) Treatment of periodontal disease in diabetes reduces glycated hemoglobin. J Periodontol 68:713–719PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Koichiro Irie
    • 1
  • Daisuke Ekuni
    • 1
  • Takaaki Tomofuji
    • 1
  • Manabu Morita
    • 1
  1. 1.Department of Preventive Dentistry and Dental Public HealthAichi-Gakuin UniversityChikusa-kuJapan

Personalised recommendations