Skip to main content

Physical Aspects of Pediatric Nuclear Medicine Imaging

  • Chapter
  • First Online:
Pediatric Nuclear Medicine and Molecular Imaging

Abstract

There have been a number of advances in nuclear medicine imaging in the past decade, particularly with regard to SPECT, PET, hybrid imaging, image processing, and tomographic reconstruction. Many of these advancements can be applied to improve the quality of nuclear medicine imaging in children. Often this has led to imaging with higher sensitivity or image quality improvements with few counts allowing for the extension of advanced technologies to smaller children or the reduction of radiation dose to the patient while still providing high-quality clinical results. The application of nuclear medicine to children takes special care with respect to the approach to image acquisition, the choice of instrumentation including collimation, and the application of new processing and reconstruction techniques. A clear understanding of how these choices can enhance or hinder the quality of the nuclear medicine study is essential in these precious and challenging patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snay ER, Treves ST, Fahey FH. Improved quality of pediatric 123I-MIBG images with medium-energy collimators. J Nucl Med Technol. 2011;39:100–4.

    Article  PubMed  Google Scholar 

  2. King MA, Doherty PW, Schwinger RB, Jacobs DA, Kidder RE, Miller TR. Fast count-dependent digital filtering of nuclear medicine images: concise communication. J Nucl Med. 1983;24:1039–45.

    CAS  PubMed  Google Scholar 

  3. Wesolowski CA, Yahil A, Puetter RC, et al. Improved lesion detection from spatially adaptive, minimally complex, Pixon reconstruction of planar scintigraphic images. Comput Med Imaging Graph. 2005;29:65–81.

    Article  PubMed  Google Scholar 

  4. Hsiao E, Cao X, Zurakowsi D, Zukotynski K, Drubach L, Grant F, Yahil A, Vijay H, Davis RT, Fahey FH, Treves ST. Reduction in radiation dose in MAG3 renography by enhanced planar processing. Radiology. 2011;261:907–15.

    Article  PubMed  Google Scholar 

  5. Markelewicz R, Vitello M, Cao X, Zurakowski D, Zukotynski K, Drubach L, Grant F, Bar-Sever Z, Gelfand M, Treves ST. Dose reduction in newborns and infants undergoing hepatobiliary scintigraphy. Presented at Society of Nuclear Medicine annual meeting, Miami, FL, 2012.

    Google Scholar 

  6. Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52:318–22.

    Article  PubMed  Google Scholar 

  7. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology. 1963;80:653–61.

    Google Scholar 

  8. Keyes Jr JW, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron – a scintillation-camera transaxial tomograph. J Nucl Med. 1977;18:381–7.

    PubMed  Google Scholar 

  9. Jaszczak RJ, Murphy PH, Huard D, et al. Radionuclide emission computed tomography of the head with Tc-99m and a scintillation camera. J Nucl Med. 1977;18:373–80.

    CAS  PubMed  Google Scholar 

  10. Fahey FH, Harkness BA, Keyes Jr JW, et al. Sensitivity, resolution and image quality with a multi-head SPECT camera. J Nucl Med. 1992;33:1859–63.

    CAS  PubMed  Google Scholar 

  11. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.

    Article  PubMed  Google Scholar 

  12. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr. 1984;8:306–16.

    CAS  PubMed  Google Scholar 

  13. Stansfield EC, Sheehy N, Zurakowski D, Vija AH, Fahey FH, Treves ST. Pediatric 99mTc-MDP bone SPECT with ordered subset expectation maximization iterative reconstruction with isotropic 3D resolution. Radiology. 2010;257:793–801.

    Article  PubMed  Google Scholar 

  14. Sheehy N, Tetrault T, Zurakowski D, Vija AH, Fahey FH, Treves ST. Pediatric 99mTc-DMSA SPECT using iterative reconstruction with isotropic resolution recovery: improved image quality and reduction in radiopharmaceutical administered activity. Radiology. 2009;251:511–6.

    Article  PubMed  Google Scholar 

  15. Fahey FH, Palmer MR, Strauss K, Zimmerman RE, Badawi R, Treves ST. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET. Radiology. 2007;243:96–104.

    Article  PubMed  Google Scholar 

  16. Alessio AM, Kinahan PE, Manchanda V, et al. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50:1570–7.

    Article  PubMed  Google Scholar 

  17. Hurwitz LM, Yoshizumi TT, Goodman PC, Nelson RC, Toncheva G, Nguyen GB, Lowry C, Anderson-Evans C. Radiation dose savings for adult pulmonary embolus 64-MDCT using bismuth breast shields, lower peak kilovoltage, and automatic tube current modulation. AJR Am J Roentgenol. 2009;192:244–53.

    Article  PubMed  Google Scholar 

  18. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28:94–108.

    Article  PubMed  Google Scholar 

  19. Beyer T, Weigert M, Quick HH, et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging. 2008;35:1142–6.

    Article  PubMed  Google Scholar 

  20. Martinez-Moller A, Souvatzoglou M, Delso G, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  21. Schulz V, Torres-Espallardo I, Renisch S, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  CAS  PubMed  Google Scholar 

  22. Guérin B, Reese T, Cho S, Chun SY, Zhu X, Catana C, Alpert NM, El Fakhri G. Non-rigid PET motion compensation using tagged-MRI in simultaneous PET-MR imaging. Med Phys. 2011;38:3025–38.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chun SY, Reese T, Guerin B, Catana C, Zhu X, Alpert N, El Fakhri G. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53:1284–91. Featured cover article.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic H. Fahey DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fahey, F.H., Lim, R., El-Fakhri, G. (2014). Physical Aspects of Pediatric Nuclear Medicine Imaging. In: Treves, S. (eds) Pediatric Nuclear Medicine and Molecular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9551-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9551-2_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9550-5

  • Online ISBN: 978-1-4614-9551-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics