Skip to main content

Imaging Parathyroid and Neuroendocrine Tumors

  • Chapter
  • First Online:
Pediatric Nuclear Medicine and Molecular Imaging
  • 2429 Accesses

Abstract

Nuclear medicine studies have important roles in the evaluation and localization of the diverse group of endocrine and neuroendocrine tumors that includes tumors of the parathyroid glands, tumors originating in neural crest-derived cells in the sympathetic nervous system, and neuroendocrine tumors. Nuclear medicine evaluation of these tumors typically has relied on single-photon emitting radiopharmaceuticals. Parathyroid imaging most commonly is performed with 99mTc-sestamibi. Imaging of other neuroendocrine tumors typically has used radioiodinated (123I, 131I) meta-iodobenzylguanidine (MIBG) and 111In-pentetreotide. There is a developing role for PET using 18F-FDG, as well as newer PET radiopharmaceuticals labeled with 18F, 11C, and 68Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukorka JS, Zeigler MA, Clark OH, et al. The American Association of Clinical Endocrinologists and the American Association of Endocrine Surgeons position statement on the diagnosis and management of primary hyperparathyroidism. Endocr Pract. 2005;11:49–54.

    Article  Google Scholar 

  2. DeLellis RA, Mazzaglia P, Mangray S. Primary hyperparathyroidism. Arch Pathol Lab Med. 2008;132:1251–62.

    PubMed  Google Scholar 

  3. Palestro CJ, Tomas MB, Tronco GG. Radionuclide imaging of the parathyroid glands. Semin Nucl Med. 2005;35:266–76.

    Article  PubMed  Google Scholar 

  4. Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J Nucl Med. 1992;33:1801–7.

    CAS  PubMed  Google Scholar 

  5. Eslamy HK, Ziessman HA. Parathyroid scintigraphy in patients with primary hyperparathyroidism: 99mTc sestamibi SPECT and SPECT/CT. Radiographics. 2008;28:1461–76.

    Article  PubMed  Google Scholar 

  6. Johnson NA, Tublin ME, Ogilvie JB. Parathyroid imaging: technique and role in the preoperative evaluation of primary hyperparathyroidism. AJR Am J Radiol. 2007;188:1706–15.

    Google Scholar 

  7. Mihai R, Simon D, Hellman P. Imaging for primary hyperparathyroidism – an evidence-based analysis. Langenbecks Arch Surg. 2009;394:765–84.

    Article  PubMed  Google Scholar 

  8. Bergenfelz AOJ, Hellamn P, Harrison B, Sitges-Serra A, Dralle H. Langenbecks Arch Surg. 2009;394:761–4.

    Article  PubMed  Google Scholar 

  9. Nichols KJ, Tomas MB, Tronco GG, et al. Preoperative parathyroid scintigraphic lesion localization: accuracy of various types of readings. Radiology. 2008;248:221–32.

    Article  PubMed  Google Scholar 

  10. O’Doherty MJ, Kettle AG, Collins REC, Coakley AJ. Parathyroid imaging with technetium-99m-sestamibi: preoperative localization and tissue uptake studies. J Nucl Med. 1992;33:313–8.

    PubMed  Google Scholar 

  11. Hetrakul N, Civelek AC, Stagg CA, Udelsman R. In vitro accumulation of technetium-99m-sestamibi in human parathyroid mitochondria. Surgery. 2001;130:1011–8.

    Article  CAS  PubMed  Google Scholar 

  12. Pons F, Torregrosa JV, Fuster D. Biological factors influencing parathyroid localization. Nucl Med Commun. 2003;24:121–4.

    Article  CAS  PubMed  Google Scholar 

  13. Friedman K, Somervell H, Patel P, et al. Effect of calcium channel blockers on the sensitivity of pre-operative 99mTc-MIBI SPECT for hyperparathyroidism. Surgery. 2004;136:1199–204.

    Article  PubMed  Google Scholar 

  14. Ffeld JG, Erichson K, Pfeffer PF, Clausen OP, Rootwelt K. Technetium-99m-tetrofosmin for parathyroid scintigraphy: a comparison with sestamibi. J Nucl Med. 1997;38:831–4.

    Google Scholar 

  15. Coakely AJ, Kettle AG, Wells CP, O’Doherty MJ, Collins RE. 99mTc-sestamibi – a new agent for parathyroid imaging. Nucl Med Commun. 1989;10:791–4.

    Article  Google Scholar 

  16. Bergenfelz A, Tennvall J, Valdermarsson S, Lindblom P, Tibblin S. Sestamibi versus thallium subtraction scintigraphy in parathyroid localization: a prospective comparative study in patients with predominantly mild primary hyperparathyroidism. Surgery. 1997;121:601–5.

    Article  CAS  PubMed  Google Scholar 

  17. Balon HR, Silberstein EB, Meier DA, et al. Society of Nuclear Medicine procedure guideline for thyroid scintigraphy v3.0. 2006. http://interactive.snm.org/docs/Thyroid_Scintigraphy_V3.pdf. Accessed 28 Nov 2012.

  18. Scheff AM, Spies WG, McDougall IR, et al. ACR-SNM-SPR practice guideline for the performance of thyroid scintigraphy and uptake measurements. 2009. www.acr.org/~/media/ACR/Documents/PGTS/guidelines/Thyroid_Scintigraphy.pdf. Accessed 28 Nov 2012.

  19. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F; for the EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2007;34:796–8.

    Google Scholar 

  20. Intenzo CM, Dam HQ, Manzone TA, Kim SM. Imaging of the thyroid in benign and malignant disease. Semin Nucl Med. 2012;42:49–61.

    Article  PubMed  Google Scholar 

  21. Greenspan BS, Dillehay G, Intenzo C, et al. SNM practice guideline for parathyroid scintigraphy 4.0. J Nucl Med Technol. 2012;40(2):111–8.

    Article  PubMed  Google Scholar 

  22. Judson BL, Shaha AR. Nuclear imaging and minimally invasive surgery in the management of hyperparathyroidism. J Nucl Med. 2008;49:1813–8.

    Article  PubMed  Google Scholar 

  23. Hindié E, Ugur Ő, Fuster D, et al. 2009 EANM parathyroid guidelines. Eur J Nucl Med Mol Imaging. 2009;36:1201–16.

    Article  PubMed  Google Scholar 

  24. Bénard F, Lefebvre B, Beuvon F, Langlois M-F, Bisson G. Rapid washout of technetium-99m-MIBI from a large parathyroid adenoma. J Nucl Med. 1995;36:241–3.

    PubMed  Google Scholar 

  25. Giordano A, Rubello D, Casara D. New trends in parathyroid scintigraphy. Eur J Nucl Med. 2001;28:1409–20.

    Article  CAS  PubMed  Google Scholar 

  26. Hindié E, Mellière D, Jeanguillaume C, Perlemuter L, Chéhadé F, Galle P. Parathyroid imaging using simultaneous double-window recording of technetium-99m-sestamibi and iodine-123. J Nucl Med. 1998;39:1100–5.

    PubMed  Google Scholar 

  27. Neumann DR, Obuchowski NA, DiFilipo FP. Preoperative 123I/99mTc-sestamibi subtraction SPECT and SPECT/CT in primary hyperparathyroidism. J Nucl Med. 2008;49:2012–7.

    Article  PubMed  Google Scholar 

  28. Siegel A, Mancuso M, Seltzer M. The spectrum of positive scan patterns in parathyroid scintigraphy. Clin Nucl Med. 2007;32:770–4.

    Article  PubMed  Google Scholar 

  29. Foppiani L, Del Monte P, Sartini G, et al. Intrathyroidal parathyroid carcinoma as a cause of hypercalcemia and pitfall of localization techniques: clinical and biological features. Endocr Pract. 2007;13:176–81.

    Article  PubMed  Google Scholar 

  30. Mazeh H, Kouniavsky G, Schneider DF, Makris KI, Sippel RS, Dackiw AP, Chen H, Zeiger MA. Intrathyroidal parathyroid glands: Small, but mighty (a Napoleon phenomenon). Surgery. 2012;152(6):1193–200.

    Article  PubMed  Google Scholar 

  31. Kraas J, Clark PB, Perrier ND, Morton KA. The scintigraphic appearance of subcapsular parathyroid adenomas. Clin Nucl Med. 2005;30:213–7.

    Article  PubMed  Google Scholar 

  32. Sarikaya A, Huseyinova G, Irfanoğlu ME, Erkmen N, Cermik TF, Berkarda S. The relationship between 99Tc(m)-sestamibi uptake and ultrastructural cell types of thyroid tumors. Nucl Med Commun. 2001;22:39–44.

    Article  CAS  PubMed  Google Scholar 

  33. Ali L, Loutfi I, Biswas G, Hadi N, Girgis T. Improved delineation of parathyroid lesions in patients with chronic renal failure using magnified pinhole imaging. J Nucl Med Technol. 2011;39:35–9.

    Article  PubMed  Google Scholar 

  34. Hindie E, Zanotti-Fregonara P, Just PA. Eur J Nucl Med Mol Imaging. 2010;37:623–34.

    Article  PubMed  Google Scholar 

  35. Shaha AR. Parathyroid re-exploration. Otolaryngol Clin North Am. 2004;37:833–43.

    Article  PubMed  Google Scholar 

  36. Khan A, Bilezikian J. Primary hyperparathyroidism: pathophysiology and impact on bone. Can Med Assoc J. 2000;163:164–87.

    Google Scholar 

  37. Marcocci C, Cetani F. Primary hyperparathyroidism. N Engl J Med. 2011;365:2389–97.

    Article  CAS  PubMed  Google Scholar 

  38. Parisien M, Silverberg SJ, Shane E, Dempster DW, Bilezikian JP. Bone disease in primary hyperparathyroidism. Endocrinol Metab Clin North Am. 1990;19:19–34.

    CAS  PubMed  Google Scholar 

  39. Udelsman R. Approach to the patient with persistent or recurrent primary hyperparathyroidism. J Clin Endocrinol Metab. 2011;96:2950–8.

    Article  CAS  PubMed  Google Scholar 

  40. Delellis RA. Challenging lesions in the differential diagnosis of endocrine tumors: parathyroid carcinoma. Endocr Pathol. 2008;19:221–5.

    Article  CAS  PubMed  Google Scholar 

  41. Varghese J, Rich T, Jimenez C. Benign familial hypocalciuric hypercalcemia. Endocr Pract. 2011;17:S13–7.

    Article  Google Scholar 

  42. Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol. 2008;22:129–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Eastell R, Arnold A, Branid L, et al. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab. 2009;94:340–50.

    Article  CAS  PubMed  Google Scholar 

  44. Vanstone MB, Udelsman RD, Cheng DW, Carpenter TO. Rapid correction of bone mass after parathyroidectomy in an adolescent with primary hyperparathyroidism. J Clin Endocrinol Metab. 2011;96:E347–50.

    Article  CAS  PubMed  Google Scholar 

  45. Zarabczan B, Chen H. Influence of surgical volume on operative failures for hyperparathyroidism. Adv Surg. 2011;45:237–48.

    Article  Google Scholar 

  46. Augustine MM, Bravo PE, Zeiger MA. Surgical treatment of primary hyperparathyroidism. Endocr Pract. 2011;17:S75–82.

    Article  Google Scholar 

  47. Potts JT, Ackerman IP, Barker CF, et al. Diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann Intern Med. 1991;114:593–7.

    Article  Google Scholar 

  48. Bilezikian JP, Khan AA, Potts Jr JT. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Third International Workshop. J Clin Endocrinol Metab. 2009;94:335–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Carniero-Pla DM, Solorzano CC, Lew JI, Irvin 3rd GL. Long-term outcome of patients with intraoperative parathyroid level remaining above the normal range during parathyroidectomy. Surgery. 2008;144:989–93.

    Article  Google Scholar 

  50. Kettle AG, O’Doherty MJ. Parathyroid imaging: how good is it and how should it be done? Semin Nucl Med. 2006;36:206–11.

    Article  PubMed  Google Scholar 

  51. Siegel A, Alvarado M, Barth Jr RJ, Brady M, Lewis J. Parameters in the prediction of the sensitivity of parathyroid scanning. Clin Nucl Med. 2006;31:679–82.

    Article  PubMed  Google Scholar 

  52. Roy M, Mazeh H, Chen H, Sippel RS. Incidence and localization of ectopic parathyroid adenomas in previously unexplored patients. World J Surg. 2013;37:102–6.

    Article  PubMed  Google Scholar 

  53. Phillips CD, Shatzkes DR. Imaging of the parathyroid glands. Semin Ultrasound CT MR. 2012;33:123–9.

    Article  PubMed  Google Scholar 

  54. Vazquez BJ, Richard ML. Imaging of the thyroid and parathyroid glands. Surg Clin North Am. 2011;91:15–32.

    Article  PubMed  Google Scholar 

  55. Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2008;52:519–30.

    Article  CAS  PubMed  Google Scholar 

  56. Triponez F, Clark OH, Vanrenthergem Y, Evenepoel P. Surgical treatment of persistent hyperparathyroidism after renal transplantation. Ann Surg. 2008;248:18–30.

    Article  PubMed  Google Scholar 

  57. Hicks RJ. Use of molecular targeted agents for the diagnosis, staging and therapy of neuroendocrine malignancy. Cancer Imaging. 2010;10:S83–91.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Rindl G, Klöppel G. Endocrine tumors of the gut and pancreas tumor biology and classification. Neuroendocrinology. 2004;80:S12–5.

    Article  Google Scholar 

  59. Emilio Bombardieri E, Giammarile F, Aktolum C, et al. 131I/123I Metaiodobenzylguanidine (mIBG) scintigraphy – procedures guidelines for tumour imaging. 2010. http://interactive.snm.org/docs/EANM_Guideline_for_1131_1123. Accessed 12 Oct 2012.

  60. Khafagi FA, Shapiro B, Fig LM, Mallette S. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481–9.

    CAS  PubMed  Google Scholar 

  61. Solanki KK, Bomanji J, Moyes J, Mather S, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:513–21.

    Article  CAS  PubMed  Google Scholar 

  62. Giammarile F, Chiti A, Lassman M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-ioidobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  PubMed  Google Scholar 

  63. Snay ER, Treves ST, Fahey FH. Improved quality of pediatric 123I-MIBG images with medium-energy collimators. J Nucl Med Technol. 2011;39:100–4.

    Article  PubMed  Google Scholar 

  64. Intenzo CM, Jabbour S, Lin HC, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographics. 2007;27:1355–69.

    Article  PubMed  Google Scholar 

  65. Bombardieri E, Ambrosini V, Aktolun C, et al. 111In-pentreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:1441–8.

    Article  PubMed  Google Scholar 

  66. Balon HR, Brown TLY, Goldsmith SJ, et al. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol. 2011;39:317–24.

    Article  PubMed  Google Scholar 

  67. Graham MM, Menda Y. Radiopeptide imaging and therapy in the United States. J Nucl Med. 2011;52:56S–63.

    Article  CAS  PubMed  Google Scholar 

  68. Atreja A, Nepal S, Lashner BA. Making the most of currently available bowel preparations for colonoscopy. Cleve Clin J Med. 2010;77:317–26.

    Article  PubMed  Google Scholar 

  69. Bombardieri E, Coliva A, Maccauro M, et al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging. 2010;54:3–15.

    CAS  PubMed  Google Scholar 

  70. Wong KK, Wynn EA, Myles J, Ackerman RJ, Frey KA, Avram AM. Comparison of single time-point [111-In] pentetreotide SPECT/CT with dual time-point imaging of neuroendocrine tumors. Clin Nucl Med. 2011;36:25–31.

    Article  PubMed  Google Scholar 

  71. Gatley SJ. Labeled glucose analogs in the genomic era. J Nucl Med. 2003;44:1082–6.

    CAS  PubMed  Google Scholar 

  72. The MICAD Research Team. [18F]Fluoro-2-deoxy-2-D-glucose. In: Molecular imaging and contrast agent database (MICAD). Bethesda: National Center for Biotechnology Information (US); 2004–2012. www.ncbi.nlm.nih.gov/books/NBK23335. Accessed 6 Aug 2012.

  73. Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med. 2002;32:6–12.

    Article  PubMed  Google Scholar 

  74. Treves ST, Parisi MT, Gelfand MJ. Pediatric radiopharmaceutical doses: new guidelines. Radiology. 2011;261:347–9.

    Article  PubMed  Google Scholar 

  75. Goldsmith S. Update on nuclear medicine imaging of neuroendocrine tumors. Future Oncol. 2009;5:75–84.

    Article  CAS  PubMed  Google Scholar 

  76. Koopmans KP, Neels ON, Kema IP, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71:199–213.

    Article  PubMed  Google Scholar 

  77. Breeman WA, de Blois E, Szechan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP. 68Ga-labeled DOTA-peptides and 68Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med. 2011;41:314–21.

    Article  PubMed  Google Scholar 

  78. Waguespack SG, Rich T, Grubbs E, et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2010;95:2023–37.

    Article  CAS  PubMed  Google Scholar 

  79. Timmers HJ, Taieb D, Pacek K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res. 2012;44:367–72.

    Article  CAS  PubMed  Google Scholar 

  80. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.

    Article  CAS  PubMed  Google Scholar 

  81. Neumann HP, Bausch B, McWhinney SR, et al. Freiburg-Warsaw-Columbus Pheochromocytoma Study Group. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346:1459–66.

    Article  CAS  PubMed  Google Scholar 

  82. Eisenhofer G, Schott M, Bornstein S. Pheochromocytoma and paraganglioma: Recent progress and new vistas for improved patient care. Horm Metab Res. 2012;44:325–7.

    Article  CAS  PubMed  Google Scholar 

  83. Scholtz T, Eisenhofer G, Pacak K, Dralle H, Lehnert H. Current treatment of malignant pheochromocytoma. J Clin Endocrinol Metab. 2007;92:1217–25.

    Article  Google Scholar 

  84. Miskulin J, Shulkin BL, Doherty GM, Sisson JC, Burney RE, Gauger PG. Is preoperative iodine 123 meta-iodobenzylguanidine scintigraphy routinely necessary before initial adrenalectomy for pheochromocytoma? Surgery. 2003;134:918–22.

    Article  PubMed  Google Scholar 

  85. Mihai R, Gleeson F, Roskell D, Parker A, Sadler G. Routine preoperative 123I-MIBG scintigraphy for patients with phaeochromocytoma is not necessary. Langenbecks Arch Surg. 2008;393:725–7.

    Article  PubMed  Google Scholar 

  86. Meyer-Rochow GY, Schembri GP, Benn DE, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (MIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol. 2010;17:392–400.

    Article  PubMed  Google Scholar 

  87. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytomas: Results of a meta-analysis. J Clin Endocrinol Metab. 2010;95:2596–606.

    Article  CAS  PubMed  Google Scholar 

  88. Koopmans KP, Jager PL, Kema IP, Kerstens MN, Albers F, Dullaart RP. 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med. 2008;49:1232–7.

    Article  PubMed  Google Scholar 

  89. Timmers HJ, Chen CC, Carrasquillo JA, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Pinchot SN, Holen K, Sippel RS, Chen H. Carcinoid tumors. Oncologist. 2008;13:1255–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Khan MU, Morse M, Coleman RE. Radioiodinated metaiodobenzylguanidine in the diagnosis and therapy of carcinoid tumors. Q J Nucl Med Mol Imaging. 2008;52:441–54.

    CAS  PubMed  Google Scholar 

  92. Ilias I, Pacak K. A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol. 2008;35:S27–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Jager PL, Chirakal R, Marriot CJ, Brouwers AD, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49:573–86.

    Article  CAS  PubMed  Google Scholar 

  94. Jensen RT, Cadiot G, Brandi ML, et al. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95:98–119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Kaltsas G, Korbonits M, Heintz E, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86:895–902.

    Article  CAS  PubMed  Google Scholar 

  96. Ezziden S, Logvinski T, Yong-Hing C, et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2006;47:223–33.

    Google Scholar 

  97. Binderup T, Knigge U, Loft A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.

    Article  PubMed  Google Scholar 

  98. Rufini V, Baum CP, Castaldi P, et al. Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging. 2012;37:1004–20.

    Article  PubMed  Google Scholar 

  99. Treglia G, Rufini V, Salvatori M, Giordano A, Giovanella L. PET imaging in recurrent medullary thyroid carcinoma. Int J Mol Imaging. 2012;2012;9. Article ID 324686, doi:10.1155/2012/324686.

  100. Palladino AA, Stanley CA. A specialized team approach to diagnosis and medical versus surgical treatment of infants with congenital hyperinsulinism. Sem Pediatr Surg. 2011;20:32–7.

    Article  Google Scholar 

  101. Arnoux J-B, Verkarre V, Saint-Martin C, et al. Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet J Rare Diseases. 2011;6:63. http://www.ojrd.com/content/6/1/63.

    Article  Google Scholar 

  102. Ismail D, Hussain K. Role of 18F-DOPA PET/CT imaging in congenital hyperinsulinism. Rev Endocr Metab Disord. 2010;11:165–9.

    Article  CAS  PubMed  Google Scholar 

  103. Zani A, Nah SA, Ron O, Totonelli G, et al. The predictive value of preoperative fluorine-18-L-3,4-dihydroxyphenylalanine positron emission tomography-computed tomography scans in children with congenital hyperinsulinism of infancy. J Pediatr Surg. 2011;46:204–8.

    Article  PubMed  Google Scholar 

  104. Mohnike W, Barthlen W, Mohnike K, Blankenstein O. Positron emission tomography/computed tomography diagnostics by means of fluorine-18-L-dihydroxyphenylalanine in congenital hyperinsulinism. Sem Pediatr Surg. 2011;20:23–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick D. Grant MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grant, F.D. (2014). Imaging Parathyroid and Neuroendocrine Tumors. In: Treves, S. (eds) Pediatric Nuclear Medicine and Molecular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9551-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9551-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9550-5

  • Online ISBN: 978-1-4614-9551-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics