Skip to main content

Cyclic Fatigue

  • Chapter
  • First Online:
  • 2957 Accesses

Abstract

Fatigue is the phenomenon of mechanical property degradation under cyclic loading. The cyclic loads may be mechanical, thermal, or a combination of the two. Many high-volume applications of composite materials involve cyclic-loading situations, e.g., automobile components and aircraft structures. Below we provide a brief description of the two main approaches that have been used to quantify fatigue behavior of materials. For a more complete description, the reader may consult the texts by Meyers and Chawla (2009) and Suresh (1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison, J.E., and J.W. Jones (1993) in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, p. 269.

    Google Scholar 

  • Almond, E.A., and B. Roebuck (1980) Metals Technology, 7, 83–85.

    Article  CAS  Google Scholar 

  • Arsenault, R.J., and U.T.S. Pillai (1996) Metall. Mater. Trans., 27A, 995–1001.

    Article  CAS  Google Scholar 

  • Arsenault, R.J., and S.B. Wu (1987) Mater. Sci. Eng., 96, 77–88.

    Article  CAS  Google Scholar 

  • Aswath, P.B., S. Suresh, D.K. Holm, and A.F. Blom (1988) J. Eng. Mater. Tech., 110 278–85.

    Article  Google Scholar 

  • Ayyar, A., and N. Chawla (2006) Comp. Sci. Tech., 66, 1980–1994.

    Google Scholar 

  • Baker, A.A., D.M. Braddick, and P.W. Jackson (1972) J. Mater. Sci., 7, 747–762.

    Article  CAS  Google Scholar 

  • Bauschinger, J. (1886) Mitt: Mech-Tech Lab., XIII Munchen.

    Google Scholar 

  • Bettge, D., B. Gunther, W. Wedell, P.D. Portella, J. Hemptenmacher, and P.W.M. Peters (2004) in Low Cycle Fatigue 5, (P. D. Portella, H. Sehitoglu, K. Hatanaka, eds.), DVM, Berline, pp. 81–86.

    Google Scholar 

  • Bettge, D., B. Gunther, W. Wedell, P.D. Portella, J. Hemptenmacher, P.W.M. Peters, and B. Skrotzki (2007) Mater. Sci. Eng., A452–453, 536–544

    Google Scholar 

  • Blatt, D., J.R. Jira, and J.M. Larsen (1995) Scripta Metall. Mater., 33, 939–944.

    Article  CAS  Google Scholar 

  • Bonnen, J.J., C.P. You, J.E. Allison, and J.W. Jones (1990) in Proceedings of the International Conference on Fatigue, Pergamon Press, New York, pp. 887 − 892.

    Google Scholar 

  • Boselli, J., P.D. Pitcher, P.J. Gregson, and I. Sinclair (2001) Mater. Sci. Eng., A300, 113–124.

    CAS  Google Scholar 

  • Calabrese, C., and C. Laird (1974a) Mater. Sci. Eng., 13, 141–157.

    Article  CAS  Google Scholar 

  • Calabrese, C., and C. Laird (1974b) Mater. Sci. Eng., 13, 159–174.

    Article  CAS  Google Scholar 

  • Carreno-Morelli, E., N. Chawla, and R. Schaller (2001) J. Mater. Sci. Lett., 20, 163–165.

    Article  CAS  Google Scholar 

  • Champion, A.R., W.H. Krueger, H.S. Hartman, and A.K. Dhingra (1978), in Proc. 1978 Intl. Conf. Composite Materials (ICCM/2), TMS-AIME, New York, p. 883.

    Google Scholar 

  • Chapman, N.C., S.S. Singh, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, Mater. Sci. Eng. (2013) in preparation.

    Google Scholar 

  • Chawla, K.K. (1973a) Metallography, 6, 155.

    Article  CAS  Google Scholar 

  • Chawla, K.K. (1973b) Phil. Mag., 28, 401.

    Article  CAS  Google Scholar 

  • Chawla, K.K. (2012) Composite Materials: Science & Engineering, 3rd ed., Springer-Verlag, New York.

    Google Scholar 

  • Chawla, K.K. (1975) Fiber Sci. Tech., 8, 49.

    Article  CAS  Google Scholar 

  • Chawla, K.K. (1991) in Metal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic press, pp. 235–253.

    Google Scholar 

  • Chawla, K.K. and N. Chawla (2004) in Kirk-Othmer Encyclopedia, John-Wiley and Sons, New York.

    Google Scholar 

  • Chawla, K.K., and P.K. Liaw (1979) J. Mater. Sci., 14, 2143.

    Article  CAS  Google Scholar 

  • Chawla, K.K., and M. Metzger (1972) J. Mater. Sci., 7, 34.

    Article  CAS  Google Scholar 

  • Chawla, N. (1997) Metall. Mater. Trans., 28A, 2423.

    Article  CAS  Google Scholar 

  • Chawla, N. and J.E. Allison (2001) in Encyclopedia of Materials: Science and Technology, vol. 3, (B. Ilschner and P. Lukas, eds.), Elsevier Science, pp. 2969–2974.

    Google Scholar 

  • Chawla, N., C. Andres, J.W. Jones, and J.E. Allison (1998a) Metall. Mater. Trans., 29A, 2843.

    Article  CAS  Google Scholar 

  • Chawla, N., C. Andres, J.W. Jones, and J.E. Allison (1998b) Scripta Mater., 38, 1596.

    Google Scholar 

  • Chawla, N., L.C. Davis, C. Andres, J.E. Allison, J.W. Jones (2000a) Metall. Mater. Trans., 31A, 951–957.

    CAS  Google Scholar 

  • Chawla, N., and V.V. Ganesh, Int. J. Fatigue (2010) 32, 856–863.

    Article  CAS  Google Scholar 

  • Chawla, N., U. Habel, Y.-L. Shen, C. Andres, J.W. Jones, and J.E. Allison (2000b) Metall. Mater. Trans., 31A, 531–540.

    Article  CAS  Google Scholar 

  • Chawla, N., J.W. Holmes, and R.A. Lowden (1996) Scripta Mater., 35, 1411.

    Article  CAS  Google Scholar 

  • Chawla, N., J.W. Jones, and J.E. Allison (1999) in Fatigue '99 (X.R. Wu and Z.G. Wang, eds.), EMAS/HEP.

    Google Scholar 

  • Chawla, N., M. Kerr, and K.K. Chawla (2005) J. Am. Ceram. Soc., 88, 101–108.

    Article  CAS  Google Scholar 

  • Chawla, N. and Y.-L. Shen (2001) Adv. Eng. Mater., 3, 357–370.

    Article  CAS  Google Scholar 

  • Cook, J., and J.E. Gordon (1964) Proc. Roy. Soc. Lond., A282, 508.

    Google Scholar 

  • Cotterill, P.J., and P. Bowen (1993) Composites, 24, 214–221.

    Article  CAS  Google Scholar 

  • Cotterill, P.J., and P. Bowen (1996) Mater. Sci. Tech., 12, 523–529.

    Article  CAS  Google Scholar 

  • Couper, M.J., and K. Xia (1991) in Metal Matrix Composites–Processing, Microstructure and Properties, (N. Hansen et al., eds.), Riso National Laboratory, Roskilde, Denmark, p. 291.

    Google Scholar 

  • Davidson, D.L., K.S. Chan, A. McMinn, and G.R. Leverant (1989) Metall. Trans., 20A, 2369–2378.

    CAS  Google Scholar 

  • Doker, H., and G. Marci (1983) Int. J. Fatigue, 5, 187–191.

    Article  Google Scholar 

  • Foulk III, J.W., D.H. Allen, and K.L.E. Helms (1998) Mech. Mater., 29, 53–68.

    Article  Google Scholar 

  • Ganesh, V.V., and N. Chawla (2004) Metall. Mater. Trans., 35A, 53–62.

    Article  CAS  Google Scholar 

  • Gomez, J.P., and F.E. Wawner (1988) personal communication.

    Google Scholar 

  • Gouda, M., K.M. Prewo, and A.J. McEvily (1981) in Fatigue of Fibrous Composite Materials, p. 101, ASTM STP, 723, Amer. Soc. Testing and Materials, Philadelphia.

    Google Scholar 

  • Hack, J.E., R.A. Page, and G.R. Leverant (1987) Metall. Trans., 15A, 1389.

    Google Scholar 

  • Hall, J., J.W. Jones, and A. Sachdev (1994) Mater. Sci. Eng., A183, 69.

    Google Scholar 

  • Harmon, D.M., C.R. Saff, and C.T. Sun (1987) AFW AL- TR-87–3060. Air Force Wright Aeronautical Labs., Dayton, Ohio.

    Google Scholar 

  • Hassan, H.A., J.J. Lewandowski, and M.H. Abd El-latif, (2004) Metall. Mater. Trans., 35A, 45–52.

    Article  CAS  Google Scholar 

  • Hruby, P., S.S. Singh, J. Silva, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, Comp. Sci. Tech., (2013) submitted.

    Google Scholar 

  • Huang, J., J.E. Spowart, and J.W. Jones (2006) Fatigue Fract. Engng. Mater. Struct., 29, 507–517

    Article  CAS  Google Scholar 

  • Johnson, W.S. (1982) in Damage in Composite Materials, ASTM STP 775, American Society for Testing and Materials, Philadelphia, p. 83.

    Google Scholar 

  • Johnson, W.S. (1988) in Mechanical and Physical Behavior of Metallic and Ceramic Composites, 9th Risø Intl. Symp. on Metallurgy and Materials Science, Rise Nat. Lab., Roskilde, Denmark.

    Google Scholar 

  • Johnson, W.S., and R.R. Wallis (1986) in Composite Materials: Fatigue and Fracture, ASTM STP 907, American Society for Testing and Materials, Philadelphia, p. 161.

    Google Scholar 

  • Kerr, M., N. Chawla, and K.K. Chawla (Feb.,2005) JOM, 2, 67–70.

    Google Scholar 

  • Kindermann, P., P. Schlund, H.-G. Sockel, M. Herr, W. Heinrich, K. Görtring, and U. Schleinkofer (1999) Int. J. Refractory & Hard Materials, 17, 55

    Article  CAS  Google Scholar 

  • Kwei, L.K., and K.K. Chawla (1992) J. Mater. Sci., 27, 1101–1106.

    Article  CAS  Google Scholar 

  • Lewandowski, J.J. (2000) in Comprehensive Composite Materials, vol. 3, (A. Kelly and C. Zweben, eds.), Elsevier Press, pp. 151–187.

    Google Scholar 

  • Li, C., and F. Ellyin (1996) Mater. Sci. Eng., A214, 115.

    CAS  Google Scholar 

  • Liu, J., and P. Bowen (2002) Acta Mater., 50, 4205–4218.

    Article  CAS  Google Scholar 

  • Liu, J., and P. Bowen (2003) Metall. Mater. Trans., 34A, 1193–1202.

    Article  CAS  Google Scholar 

  • LLorca, J. (1994) Acta Metall. Mater., 42, 151–162.

    Article  CAS  Google Scholar 

  • LLorca, J. (2002) Prog. Mater. Sci., 47, 283–353.

    Article  CAS  Google Scholar 

  • LLorca, J., A. Needleman, and S. Suresh (1990) Scripta Metall. Mater., 24, 1203.

    Article  CAS  Google Scholar 

  • LLorca, J., J. Ruiz, J.C. Healy, M. Elices, and C.J. Beevers (1994) Mater. Sci. Eng., A185, 1–15.

    CAS  Google Scholar 

  • LLorca, J., S. Suresh, and A. Needleman (1992) Metall. Mater. Trans., 23A, 919–933.

    CAS  Google Scholar 

  • Lukasak, D.A., and R.J. Bucci (1992) Alloy Technology Div. Rep. No. KF-34, Alcoa Technical Center, Alcoa, PA.

    Google Scholar 

  • Lukasak, D.A., and D.A. Koss (1993) Composites, 24, 262.

    Article  CAS  Google Scholar 

  • Mackenzie, J.K. (1950) Proc. Phys. Soc., B63, 2.

    Google Scholar 

  • Mall, S., and B. Portner (1992) J. Eng. Mater., Tech., 114, 409–415.

    Article  CAS  Google Scholar 

  • McCartney, R.F., R.C. Richard, and P.S. Trozzo (1967) Trans. ASM, 60, 384.

    Google Scholar 

  • McGuire, M.A., and B. Harris (1974) J. Phys., Appl. Phys., 7, 1788.

    Article  CAS  Google Scholar 

  • Majumdar, B.S., and G.M. Newaz (1995) Mater. Sci. Eng., A200, 114–129.

    CAS  Google Scholar 

  • Meyers, M.A., and K.K. Chawla (2009) Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Mott, N.F. (1952) Phil. Mag., 43, 1151.

    Google Scholar 

  • Mueller, L.R., and M. Gregory (1988) paper presented at First Annual Metals and Metals Processing Conf., SAMPE, Cherry Hill, NJ.

    Google Scholar 

  • Orowan, E. (1959) in Internal Stresses and Fatigue in Metals, (G.M. Rassweiler and W.L. Grube, eds.), Elsevier Press, New York.

    Google Scholar 

  • Page, R.A., J.E. Hack, R. Sherman, and G.R. Leverant (1987) Metall. Trans., 15A, 1397.

    Google Scholar 

  • Paris, P.C., M.P. Gomez, and W.P. Anderson (1961) The Trend in Engineering, 13, 9.

    Google Scholar 

  • Paris, P.C., and F. Erdogan (1963) J. Basic. Eng. Trans. ASME, 85, 528.

    Article  CAS  Google Scholar 

  • Pfeiffer, N.J., and J.A. Alic. (1978) J. Eng. Mater. Tech., 100, 32.

    Article  Google Scholar 

  • Peters, P.W.M., J. Hemptenmacher, B. Gunther, D. Bettge, and P.D. Portella (2004) in Proc. ECCM-11.

    Google Scholar 

  • Pickard, S.M., and B. Derby (1990) Acta Metall. Mater. 38, 2537–2552.

    Article  CAS  Google Scholar 

  • Poza, P., and J. LLorca (1999) Metall. Mater. Trans., 30A, 857.

    CAS  Google Scholar 

  • Pugsley, V.A., and H.-G. Sockel (2004) Mater. Sci. Eng., A366, 87.

    Google Scholar 

  • Rao, K.T. Venkateshwara, S.C. Siu, and R.O. Ritchie (1993) Metall. Trans., 24A, 721–734.

    CAS  Google Scholar 

  • Rezai-Aria, F., T. Liechti, and G. Gagnon (1993) Scripta Metall. Mater., 28, 587–592.

    Article  CAS  Google Scholar 

  • Roebuck, B., E.A. Almond, and A.M. Cottenden (1984) Mater. Sci. Eng, 66, 179.

    Article  CAS  Google Scholar 

  • Salazar, A., J.Y. Pastor, and J. LLorca (2004) IEEE Trans. Appl. Supercon., 14, 1941–1947.

    Article  CAS  Google Scholar 

  • Sanders, B.P., and S. Mall (1996) J. Comp. Tech. Res., 18, 15–21.

    Article  CAS  Google Scholar 

  • Seeger, A., J. Diehl, S. Mader, and H. Rebstock (1958) Phil. Mag., 2, 323.

    Article  Google Scholar 

  • Shang, J.K., W.K. Yu, and R.O. Ritchie (1988) Mater. Sci. Eng. A102, 181 − 192.

    Google Scholar 

  • Shen, Y.-L., M. Finot, A. Needleman and S. Suresh (1995) Acta Metall. Mater., 43, 1701.

    Article  CAS  Google Scholar 

  • Soumelidis, P., J.M. Quenisset, R. Naslain, and N.S. Stoloff (1986) J. Mater. Sci., 21, 895–903.

    Google Scholar 

  • Starke, E.A., and G. Luetjering (1979) in Fatigue and Microstructure, J.T. Stayley and E.A. Starke, eds., American Society for Metals, pp 205–243.

    Google Scholar 

  • Stoloff, N.S. (1978) in Advances in Composite Materials, p. 247. Applied Sci. Pub., London.

    Google Scholar 

  • Sugimura, Y., and S. Suresh (1992) Metall. Trans., 23A, 2231–2242.

    CAS  Google Scholar 

  • Suresh, S. (1998) Fatigue of Materials, 2nd Ed., Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Taylor, L.G., and D.A. Ryder (1976) Composites, 1, 27.

    Article  Google Scholar 

  • Vasudevan, A.K., K. Sadananda, and N. Louat (1994) Mater. Sci. Eng., A188, 1–22.

    Google Scholar 

  • Vasudevan, A.K., and K. Sadananda (1995) Metall. Mater. Trans., 26, 1221–1234.

    Article  Google Scholar 

  • Vyletel, G.M., D.C. Van Aken, and J.E. Allison (1991) Scripta Metall. Mater., 25, 2405–2410.

    Article  CAS  Google Scholar 

  • Walls, D.P., G. Bao, and F.W. Zok (1993) Acta Metall. Mater., 41, 2061–2071.

    Article  CAS  Google Scholar 

  • Walls, D.P., and F.W. Zok (1994) Acta Metall. Mater., 42, 2675–2681.

    Article  Google Scholar 

  • Wu, G., and J.-M. Yang (2005) JOM, 57, 72–79.

    Article  Google Scholar 

  • Xu, Z.R., K.K. Chawla, A. Wolfenden, A. Neuman, G.M. Liggett, and N. Chawla (1995) Mater. Sci. Eng., A203, 75.

    CAS  Google Scholar 

  • Zhang, T., and H. Ghonem (1995) Fatigue. Fract. Eng. Mater. Struc., 18, 1249–1262.

    Article  CAS  Google Scholar 

  • Zhang, W., M. Gu, J. Chen, Z. Wu, F. Zhang, H.E. Devé (2003) Mater. Sci. Eng., A341, 9–17.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, N., Chawla, K.K. (2013). Cyclic Fatigue. In: Metal Matrix Composites. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9548-2_8

Download citation

Publish with us

Policies and ethics