Advertisement

Cyclic Fatigue

  • Nikhilesh Chawla
  • Krishan K. Chawla
Chapter

Abstract

Fatigue is the phenomenon of mechanical property degradation under cyclic loading. The cyclic loads may be mechanical, thermal, or a combination of the two. Many high-volume applications of composite materials involve cyclic-loading situations, e.g., automobile components and aircraft structures. Below we provide a brief description of the two main approaches that have been used to quantify fatigue behavior of materials. For a more complete description, the reader may consult the texts by Meyers and Chawla (2009) and Suresh (1998).

Keywords

Fatigue Crack Fatigue Life Fatigue Strength Crack Growth Rate Fatigue Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allison, J.E., and J.W. Jones (1993) in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, p. 269.Google Scholar
  2. Almond, E.A., and B. Roebuck (1980) Metals Technology, 7, 83–85.CrossRefGoogle Scholar
  3. Arsenault, R.J., and U.T.S. Pillai (1996) Metall. Mater. Trans., 27A, 995–1001.CrossRefGoogle Scholar
  4. Arsenault, R.J., and S.B. Wu (1987) Mater. Sci. Eng., 96, 77–88.CrossRefGoogle Scholar
  5. Aswath, P.B., S. Suresh, D.K. Holm, and A.F. Blom (1988) J. Eng. Mater. Tech., 110 278–85.CrossRefGoogle Scholar
  6. Ayyar, A., and N. Chawla (2006) Comp. Sci. Tech., 66, 1980–1994.Google Scholar
  7. Baker, A.A., D.M. Braddick, and P.W. Jackson (1972) J. Mater. Sci., 7, 747–762.CrossRefGoogle Scholar
  8. Bauschinger, J. (1886) Mitt: Mech-Tech Lab., XIII Munchen.Google Scholar
  9. Bettge, D., B. Gunther, W. Wedell, P.D. Portella, J. Hemptenmacher, and P.W.M. Peters (2004) in Low Cycle Fatigue 5, (P. D. Portella, H. Sehitoglu, K. Hatanaka, eds.), DVM, Berline, pp. 81–86.Google Scholar
  10. Bettge, D., B. Gunther, W. Wedell, P.D. Portella, J. Hemptenmacher, P.W.M. Peters, and B. Skrotzki (2007) Mater. Sci. Eng., A452–453, 536–544Google Scholar
  11. Blatt, D., J.R. Jira, and J.M. Larsen (1995) Scripta Metall. Mater., 33, 939–944.CrossRefGoogle Scholar
  12. Bonnen, J.J., C.P. You, J.E. Allison, and J.W. Jones (1990) in Proceedings of the International Conference on Fatigue, Pergamon Press, New York, pp. 887 − 892.Google Scholar
  13. Boselli, J., P.D. Pitcher, P.J. Gregson, and I. Sinclair (2001) Mater. Sci. Eng., A300, 113–124.Google Scholar
  14. Calabrese, C., and C. Laird (1974a) Mater. Sci. Eng., 13, 141–157.CrossRefGoogle Scholar
  15. Calabrese, C., and C. Laird (1974b) Mater. Sci. Eng., 13, 159–174.CrossRefGoogle Scholar
  16. Carreno-Morelli, E., N. Chawla, and R. Schaller (2001) J. Mater. Sci. Lett., 20, 163–165.CrossRefGoogle Scholar
  17. Champion, A.R., W.H. Krueger, H.S. Hartman, and A.K. Dhingra (1978), in Proc. 1978 Intl. Conf. Composite Materials (ICCM/2), TMS-AIME, New York, p. 883.Google Scholar
  18. Chapman, N.C., S.S. Singh, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, Mater. Sci. Eng. (2013) in preparation.Google Scholar
  19. Chawla, K.K. (1973a) Metallography, 6, 155.CrossRefGoogle Scholar
  20. Chawla, K.K. (1973b) Phil. Mag., 28, 401.CrossRefGoogle Scholar
  21. Chawla, K.K. (2012) Composite Materials: Science & Engineering, 3rd ed., Springer-Verlag, New York.Google Scholar
  22. Chawla, K.K. (1975) Fiber Sci. Tech., 8, 49.CrossRefGoogle Scholar
  23. Chawla, K.K. (1991) in Metal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic press, pp. 235–253.Google Scholar
  24. Chawla, K.K. and N. Chawla (2004) in Kirk-Othmer Encyclopedia, John-Wiley and Sons, New York.Google Scholar
  25. Chawla, K.K., and P.K. Liaw (1979) J. Mater. Sci., 14, 2143.CrossRefGoogle Scholar
  26. Chawla, K.K., and M. Metzger (1972) J. Mater. Sci., 7, 34.CrossRefGoogle Scholar
  27. Chawla, N. (1997) Metall. Mater. Trans., 28A, 2423.CrossRefGoogle Scholar
  28. Chawla, N. and J.E. Allison (2001) in Encyclopedia of Materials: Science and Technology, vol. 3, (B. Ilschner and P. Lukas, eds.), Elsevier Science, pp. 2969–2974.Google Scholar
  29. Chawla, N., C. Andres, J.W. Jones, and J.E. Allison (1998a) Metall. Mater. Trans., 29A, 2843.CrossRefGoogle Scholar
  30. Chawla, N., C. Andres, J.W. Jones, and J.E. Allison (1998b) Scripta Mater., 38, 1596.Google Scholar
  31. Chawla, N., L.C. Davis, C. Andres, J.E. Allison, J.W. Jones (2000a) Metall. Mater. Trans., 31A, 951–957.Google Scholar
  32. Chawla, N., and V.V. Ganesh, Int. J. Fatigue (2010) 32, 856–863.CrossRefGoogle Scholar
  33. Chawla, N., U. Habel, Y.-L. Shen, C. Andres, J.W. Jones, and J.E. Allison (2000b) Metall. Mater. Trans., 31A, 531–540.CrossRefGoogle Scholar
  34. Chawla, N., J.W. Holmes, and R.A. Lowden (1996) Scripta Mater., 35, 1411.CrossRefGoogle Scholar
  35. Chawla, N., J.W. Jones, and J.E. Allison (1999) in Fatigue '99 (X.R. Wu and Z.G. Wang, eds.), EMAS/HEP.Google Scholar
  36. Chawla, N., M. Kerr, and K.K. Chawla (2005) J. Am. Ceram. Soc., 88, 101–108.CrossRefGoogle Scholar
  37. Chawla, N. and Y.-L. Shen (2001) Adv. Eng. Mater., 3, 357–370.CrossRefGoogle Scholar
  38. Cook, J., and J.E. Gordon (1964) Proc. Roy. Soc. Lond., A282, 508.Google Scholar
  39. Cotterill, P.J., and P. Bowen (1993) Composites, 24, 214–221.CrossRefGoogle Scholar
  40. Cotterill, P.J., and P. Bowen (1996) Mater. Sci. Tech., 12, 523–529.CrossRefGoogle Scholar
  41. Couper, M.J., and K. Xia (1991) in Metal Matrix Composites–Processing, Microstructure and Properties, (N. Hansen et al., eds.), Riso National Laboratory, Roskilde, Denmark, p. 291.Google Scholar
  42. Davidson, D.L., K.S. Chan, A. McMinn, and G.R. Leverant (1989) Metall. Trans., 20A, 2369–2378.Google Scholar
  43. Doker, H., and G. Marci (1983) Int. J. Fatigue, 5, 187–191.CrossRefGoogle Scholar
  44. Foulk III, J.W., D.H. Allen, and K.L.E. Helms (1998) Mech. Mater., 29, 53–68.CrossRefGoogle Scholar
  45. Ganesh, V.V., and N. Chawla (2004) Metall. Mater. Trans., 35A, 53–62.CrossRefGoogle Scholar
  46. Gomez, J.P., and F.E. Wawner (1988) personal communication.Google Scholar
  47. Gouda, M., K.M. Prewo, and A.J. McEvily (1981) in Fatigue of Fibrous Composite Materials, p. 101, ASTM STP, 723, Amer. Soc. Testing and Materials, Philadelphia.Google Scholar
  48. Hack, J.E., R.A. Page, and G.R. Leverant (1987) Metall. Trans., 15A, 1389.Google Scholar
  49. Hall, J., J.W. Jones, and A. Sachdev (1994) Mater. Sci. Eng., A183, 69.Google Scholar
  50. Harmon, D.M., C.R. Saff, and C.T. Sun (1987) AFW AL- TR-87–3060. Air Force Wright Aeronautical Labs., Dayton, Ohio.Google Scholar
  51. Hassan, H.A., J.J. Lewandowski, and M.H. Abd El-latif, (2004) Metall. Mater. Trans., 35A, 45–52.CrossRefGoogle Scholar
  52. Hruby, P., S.S. Singh, J. Silva, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, Comp. Sci. Tech., (2013) submitted.Google Scholar
  53. Huang, J., J.E. Spowart, and J.W. Jones (2006) Fatigue Fract. Engng. Mater. Struct., 29, 507–517CrossRefGoogle Scholar
  54. Johnson, W.S. (1982) in Damage in Composite Materials, ASTM STP 775, American Society for Testing and Materials, Philadelphia, p. 83.Google Scholar
  55. Johnson, W.S. (1988) in Mechanical and Physical Behavior of Metallic and Ceramic Composites, 9th Risø Intl. Symp. on Metallurgy and Materials Science, Rise Nat. Lab., Roskilde, Denmark.Google Scholar
  56. Johnson, W.S., and R.R. Wallis (1986) in Composite Materials: Fatigue and Fracture, ASTM STP 907, American Society for Testing and Materials, Philadelphia, p. 161.Google Scholar
  57. Kerr, M., N. Chawla, and K.K. Chawla (Feb.,2005) JOM, 2, 67–70.Google Scholar
  58. Kindermann, P., P. Schlund, H.-G. Sockel, M. Herr, W. Heinrich, K. Görtring, and U. Schleinkofer (1999) Int. J. Refractory & Hard Materials, 17, 55CrossRefGoogle Scholar
  59. Kwei, L.K., and K.K. Chawla (1992) J. Mater. Sci., 27, 1101–1106.CrossRefGoogle Scholar
  60. Lewandowski, J.J. (2000) in Comprehensive Composite Materials, vol. 3, (A. Kelly and C. Zweben, eds.), Elsevier Press, pp. 151–187.Google Scholar
  61. Li, C., and F. Ellyin (1996) Mater. Sci. Eng., A214, 115.Google Scholar
  62. Liu, J., and P. Bowen (2002) Acta Mater., 50, 4205–4218.CrossRefGoogle Scholar
  63. Liu, J., and P. Bowen (2003) Metall. Mater. Trans., 34A, 1193–1202.CrossRefGoogle Scholar
  64. LLorca, J. (1994) Acta Metall. Mater., 42, 151–162.CrossRefGoogle Scholar
  65. LLorca, J. (2002) Prog. Mater. Sci., 47, 283–353.CrossRefGoogle Scholar
  66. LLorca, J., A. Needleman, and S. Suresh (1990) Scripta Metall. Mater., 24, 1203.CrossRefGoogle Scholar
  67. LLorca, J., J. Ruiz, J.C. Healy, M. Elices, and C.J. Beevers (1994) Mater. Sci. Eng., A185, 1–15.Google Scholar
  68. LLorca, J., S. Suresh, and A. Needleman (1992) Metall. Mater. Trans., 23A, 919–933.Google Scholar
  69. Lukasak, D.A., and R.J. Bucci (1992) Alloy Technology Div. Rep. No. KF-34, Alcoa Technical Center, Alcoa, PA.Google Scholar
  70. Lukasak, D.A., and D.A. Koss (1993) Composites, 24, 262.CrossRefGoogle Scholar
  71. Mackenzie, J.K. (1950) Proc. Phys. Soc., B63, 2.Google Scholar
  72. Mall, S., and B. Portner (1992) J. Eng. Mater., Tech., 114, 409–415.CrossRefGoogle Scholar
  73. McCartney, R.F., R.C. Richard, and P.S. Trozzo (1967) Trans. ASM, 60, 384.Google Scholar
  74. McGuire, M.A., and B. Harris (1974) J. Phys., Appl. Phys., 7, 1788.CrossRefGoogle Scholar
  75. Majumdar, B.S., and G.M. Newaz (1995) Mater. Sci. Eng., A200, 114–129.Google Scholar
  76. Meyers, M.A., and K.K. Chawla (2009) Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  77. Mott, N.F. (1952) Phil. Mag., 43, 1151.Google Scholar
  78. Mueller, L.R., and M. Gregory (1988) paper presented at First Annual Metals and Metals Processing Conf., SAMPE, Cherry Hill, NJ.Google Scholar
  79. Orowan, E. (1959) in Internal Stresses and Fatigue in Metals, (G.M. Rassweiler and W.L. Grube, eds.), Elsevier Press, New York.Google Scholar
  80. Page, R.A., J.E. Hack, R. Sherman, and G.R. Leverant (1987) Metall. Trans., 15A, 1397.Google Scholar
  81. Paris, P.C., M.P. Gomez, and W.P. Anderson (1961) The Trend in Engineering, 13, 9.Google Scholar
  82. Paris, P.C., and F. Erdogan (1963) J. Basic. Eng. Trans. ASME, 85, 528.CrossRefGoogle Scholar
  83. Pfeiffer, N.J., and J.A. Alic. (1978) J. Eng. Mater. Tech., 100, 32.CrossRefGoogle Scholar
  84. Peters, P.W.M., J. Hemptenmacher, B. Gunther, D. Bettge, and P.D. Portella (2004) in Proc. ECCM-11.Google Scholar
  85. Pickard, S.M., and B. Derby (1990) Acta Metall. Mater. 38, 2537–2552.CrossRefGoogle Scholar
  86. Poza, P., and J. LLorca (1999) Metall. Mater. Trans., 30A, 857.Google Scholar
  87. Pugsley, V.A., and H.-G. Sockel (2004) Mater. Sci. Eng., A366, 87.Google Scholar
  88. Rao, K.T. Venkateshwara, S.C. Siu, and R.O. Ritchie (1993) Metall. Trans., 24A, 721–734.Google Scholar
  89. Rezai-Aria, F., T. Liechti, and G. Gagnon (1993) Scripta Metall. Mater., 28, 587–592.CrossRefGoogle Scholar
  90. Roebuck, B., E.A. Almond, and A.M. Cottenden (1984) Mater. Sci. Eng, 66, 179.CrossRefGoogle Scholar
  91. Salazar, A., J.Y. Pastor, and J. LLorca (2004) IEEE Trans. Appl. Supercon., 14, 1941–1947.CrossRefGoogle Scholar
  92. Sanders, B.P., and S. Mall (1996) J. Comp. Tech. Res., 18, 15–21.CrossRefGoogle Scholar
  93. Seeger, A., J. Diehl, S. Mader, and H. Rebstock (1958) Phil. Mag., 2, 323.CrossRefGoogle Scholar
  94. Shang, J.K., W.K. Yu, and R.O. Ritchie (1988) Mater. Sci. Eng. A102, 181 − 192.Google Scholar
  95. Shen, Y.-L., M. Finot, A. Needleman and S. Suresh (1995) Acta Metall. Mater., 43, 1701.CrossRefGoogle Scholar
  96. Soumelidis, P., J.M. Quenisset, R. Naslain, and N.S. Stoloff (1986) J. Mater. Sci., 21, 895–903.Google Scholar
  97. Starke, E.A., and G. Luetjering (1979) in Fatigue and Microstructure, J.T. Stayley and E.A. Starke, eds., American Society for Metals, pp 205–243.Google Scholar
  98. Stoloff, N.S. (1978) in Advances in Composite Materials, p. 247. Applied Sci. Pub., London.Google Scholar
  99. Sugimura, Y., and S. Suresh (1992) Metall. Trans., 23A, 2231–2242.Google Scholar
  100. Suresh, S. (1998) Fatigue of Materials, 2nd Ed., Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  101. Taylor, L.G., and D.A. Ryder (1976) Composites, 1, 27.CrossRefGoogle Scholar
  102. Vasudevan, A.K., K. Sadananda, and N. Louat (1994) Mater. Sci. Eng., A188, 1–22.Google Scholar
  103. Vasudevan, A.K., and K. Sadananda (1995) Metall. Mater. Trans., 26, 1221–1234.CrossRefGoogle Scholar
  104. Vyletel, G.M., D.C. Van Aken, and J.E. Allison (1991) Scripta Metall. Mater., 25, 2405–2410.CrossRefGoogle Scholar
  105. Walls, D.P., G. Bao, and F.W. Zok (1993) Acta Metall. Mater., 41, 2061–2071.CrossRefGoogle Scholar
  106. Walls, D.P., and F.W. Zok (1994) Acta Metall. Mater., 42, 2675–2681.CrossRefGoogle Scholar
  107. Wu, G., and J.-M. Yang (2005) JOM, 57, 72–79.CrossRefGoogle Scholar
  108. Xu, Z.R., K.K. Chawla, A. Wolfenden, A. Neuman, G.M. Liggett, and N. Chawla (1995) Mater. Sci. Eng., A203, 75.Google Scholar
  109. Zhang, T., and H. Ghonem (1995) Fatigue. Fract. Eng. Mater. Struc., 18, 1249–1262.CrossRefGoogle Scholar
  110. Zhang, W., M. Gu, J. Chen, Z. Wu, F. Zhang, H.E. Devé (2003) Mater. Sci. Eng., A341, 9–17.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nikhilesh Chawla
    • 1
  • Krishan K. Chawla
    • 2
  1. 1.Arizona State UniversityTempeUSA
  2. 2.University of Alabama at BirminghamBirminghamUSA

Personalised recommendations